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Abstract

This paper is concerned with using linear features in aerial triangulation. Without loss of generality, the focus is on straight

lines with the attempt to treat tie lines in the same fashion as tie points. The parameters of tie lines appear in the block

adjustment like the tie points do. This requires a unique representation of lines in object space. We propose a four-parameter

representation that also offers a meaningful stochastic interpretation of the line parameters. The proposed line representation

lends itself to a parameterized form, allowing use of the collinearity model for expressing orientation and tie line parameters as a

function of points measured on image lines. The paper describes in detail the derivation of the extended collinearity model and

discusses the advantages of this new approach compared to the standard coplanarity model that is used in line photogrammetry.

The intention of the paper is to make a contribution to feature-based aerial triangulation on the algorithmic level.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction image understanding capacities to identify and mea-
A major benefit of digital photogrammetry is its

potential for automation. For example, automatic

aerial triangulation sets out to perform all the neces-

sary processes automatically, with as little help from a

human operator as possible. Although remarkable

progress has been achieved during the past few years,

fully automatic aerial triangulation remains an elusive

goal. The main obstacle is the block adjustment that is

still point-based. In turn, this tends to force the

processes of extracting and matching features also to

be point-based. Now, point-based methods work ex-

tremely well in traditional photogrammetry where

human operators make good use of their complex
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sure points. The mental faculty of understanding

images without conscious effort is still far beyond

the capabilities of a machine, however. Hence, it is not

a surprise that point-based photogrammetry has its

limits in view of automation.

In the attempt of making processes more robust

and thus suitable for automation, the computer vision

community has long turned to feature-based methods.

Over the years, several researchers in photogrammetry

have also strongly argued for using features instead of

points (Masry, 1981; Heikkilä, 1991; Kubik, 1992;

Mikhail, 1993; Förstner, 2000; Schenk, 2002). The

salient points brought forward are summarized as

follows:

� human operators employ sophisticated image

understanding processes and bring to bear photo-
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grammetric knowledge and experience when

selecting points, resulting in a high point quality

(location, accuracy) that may even include seman-

tic information (corner of a building). In contrast,

points extracted by computer operators are far

inferior in quality (arbitrary location, no semantic

information),
� a typical aerial scene contains more linear features

than well-defined points,1

� control information from object space is more

readily available in the form of features than points

for the purpose of orienting imagery,
� establishing correspondences between features in

different images and/or images and object space is

more reliable than point matching,
� the automation chain of photogrammetric processes

(e.g., orientation!surface reconstruction!object

recognition) begins with features.

The idea of using features in photogrammetry is

not new. Lugnani (1980) demonstrated the use of

digital entities as control information, and at the

ISPRS Congress 1988 two papers addressed the issue

of linear features. Tommaselli and Lugnani (1988)

concentrated on straight lines while Mulawa and

Mikhail (1988) included also conic sections. These

pioneering publications sparked great interest, partic-

ularly in architectural photogrammetry where straight-

line features are abundant. Subsequently, line photo-

grammetry emerged as a new field. For an excellent

overview of this subject, the reader is referred to

Heuvel (2003, chapter 1). So far, line photogrammetry

has not had a major impact on aerial triangulation,

however. Whenever a feature-based approach is

claimed in aerial triangulation, a closer look reveals

that points are meant, because bundle block adjust-

ment programs use tie points and not tie lines.

Common to the overwhelming approach of line

photogrammetry is what we call the coplanarity

approach in this paper. Here, a condition is formulat-

ed that forces the projection planes in the image and

object space to become identical. This is in contrast to

the collinearity approach where the projection rays
1 Usually, end points of linear features are not well defined.

Although a linear feature may be distinct, its end points are not

distinct points.
are mathematically modeled to intersect the line in

object space, and the projection plane in image space

is neither used nor necessary. The projection plane,

defined by the projection center and the line in image

or object space is also called definition plane or

interpretation plane in line photogrammetry. We use

projection plane in this paper, and projection ray for

the ‘‘bundle’’ ray from the perspective center through

an image point to the line in object space.

This paper pursues the collinearity approach where

the relationship between image feature and object

space feature is modeled by the collinearity equations.

This requires a parametric representation of the object

space line. Moreover, the object space line must be

uniquely represented by four parameters that also

allow a meaningful stochastic interpretation. Analo-

gously to tie points, straight lines in object space

become tie lines. Like tie points, tie lines are directly

modeled and appear as explicit parameters in the

block adjustment.

The next section summarizes the use of linear

features for orienting images. In addition, we discuss

briefly the differences between the coplanarity and

collinearity approaches. Section 3 discusses the

requirements for an optimal geometric and stochastic

line model. The proposed four-parameter representa-

tion is unique and lends itself to a parametric line

representation, which is necessary for employing the

collinearity model. Section 4 introduces tie lines into

the block adjustment, explicitly expressed with their

line parameters. This is accomplished by extending

the collinearity equations to include the line parame-

ters. The adjustment model estimates the orientation

and the line parameters simultaneously. One of the

advantages of the proposed collinearity approach is

the flexible and transparent handling of control infor-

mation, such as full and partial control lines, parallel

lines, and parallel lines with a known distance be-

tween them.

To show the application and to demonstrate the

feasibility of the proposed method, we describe in

Section 5 a small example of a block adjustment

with tie lines. The paper concludes with a brief

summary and an outlook on new applications and

future research.

The intent of this paper is to make a contribution

towards feature-based aerial triangulation on the algo-

rithmic level. The algorithms presented in Sections 3
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and 4 should allow for an implementation of a bundle

block adjustment with straight lines. In the interest of

brevity, other important issues, such as establishing

correspondences of tie lines and control lines, and

initial parameter estimation, are not addressed.
2. Background

2.1. Using features in aerial triangulation

Features occur in image and object space and

include areal and linear entities. Linear features can

be grouped into straight lines, conic sections, analyt-

ical curves, and free-form curves. Following a similar

categorization for areal features, we may distinguish

between planes, analytical surfaces, and free-form

surfaces, such as DEMs. In feature-based aerial

triangulation, all of these feature types may be used

while line photogrammetry is usually restricted to the

class of straight lines. The proposed method in this

work lends itself to the use of conic sections and

analytical space curves.

Initial efforts of line photogrammetry were directed

towards the orientation of a single image with straight

lines. A common characteristic of the proposed meth-

ods is the coplanarity approach that forces the image

and object projection planes to become identical.

Variations in the suggested methods consist of includ-

ing the interior orientation, or of dealing with special

cases, for example, the orientation with parallel lines

(Heuvel, 2003). Another important aspect of line

photogrammetry is the combination of orientation

and the reconstruction of parameterized objects (ob-

ject modeling).

Attempts at using linear features in aerial triangu-

lation are almost exclusively restricted to the orienta-

tion of single images (single photo resectioning).

Although the original publications by Mulawa and

Mikhail (1988) and Tommaselli and Lugnani (1988)

specifically mention the collinearity model and pa-

rameterized lines, subsequent work embraced the

coplanarity model. Zalmanson (2000) was the first

to rigorously pursue the use of parameterized linear

control features for image orientation. The author

successfully incorporated conic sections, 3D space

curves, and—most importantly from a practical view-

point—free form lines. Habib et al. (2002) propose the
combination of matching (establishing correspon-

dence between image and control line) with orienta-

tion with a modified Hough transformation, thus

avoiding the classical adjustment method for param-

eter estimation. In Läbe and Henze (2002), the authors

describe a procedure to orient single images fully

automatically by using 3D building models as control

information.

Orienting images is not restricted to linear control

features. Ebner and Strunz (1988) suggested orienting

stereomodels with respect to DEMs using a target

function that minimizes the z-differences. Jaw (1999)

successfully demonstrated how control surfaces can

be used in aerial triangulation by extending the

independent model method to include a relationship

between model point and planar surface patch, with a

target function that minimizes the distances along the

surface normal.

2.2. Mathematical models for incorporating linear

features

There are two principally different ways to estab-

lish a relationship between image and control features.

In the first approach, the image feature is represented

as an entity like the control feature. This entails fitting

a straight line or a curve through instances of the

image feature. Then, a relationship between image

and object space lines are formed by forcing the

projection planes to become identical, referred to here

as the coplanarity model.

The second approach takes a point of the image

feature, for example an edge pixel, and forces the

projection ray to intersect the control line by mini-

mizing the residuals of the observed image point. In

this paper, this point-to-line approach is appropriately

called the collinearity model.

2.2.1. Coplanarity approach

The basic idea of the coplanarity approach is to

formulate a constraint such that the projection planes

in image space and object space become identical

(coplanar). Such a constraint can be formulated as

kRnV¼ n ð1Þ

with k a scale factor, R the attitude matrix, nVthe
normal of the plane defined by the perspective center



2 3	4 equations, six orientation unknowns, six unknown line

parameters.

Fig. 1. Illustration of coplanarity (a) and collinearity approach (b) to establish relationships between object space lines and their partial

projections in images.
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C and image line LV, and n the normal of the plane

defined by the perspective center C and control line L.

Fig. 1a illustrates the concept. Over the years, several

variations of this basic formulation have been sug-

gested (e.g., Tommaselli and Lugnani, 1988; Mulawa

and Mikhail, 1988; Patias et al., 1995; Habib, 1999;

Heuvel, 2003).

2.2.2. Collinearity approach

Suppose a known straight line in object space

(control line) is partially imaged and detected by an

edge operator, for example. We can extend the stan-

dard collinearity model such that the projection ray

from the perspective center through an edge point

intersects the control line. Fig. 1b illustrates this

scenario. The parametric representation of the control

line conveniently describes this circumstance. Let the

line be represented by point A=(XA, YA, ZA) and

direction vector d=(a, b, c). Then any point on the

line is defined by

X ¼ XA þ t � a

Y ¼ YA þ t � b

Z ¼ ZA þ t � c ð2Þ

with t a real variable denoted as the line parameter.

Now, in the standard collinearity model we substitute
object point P by the above expression to obtain the

extended model

xp ¼ �f
ðXA þ t � a� XCÞr11 þ ðYA þ t � b� YCÞr12 þ ðZA þ t � c� ZCÞr13
ðXA þ t � a� XCÞr31 þ ðYA þ t � b� YCÞr32 þ ðZA þ t � c� ZCÞr33

yp ¼ �f
ðXA þ t � a� XCÞr21 þ ðYA þ t � b� YCÞr22 þ ðZA þ t � c� ZCÞr23
ðXA þ t � a� XCÞr31 þ ðYA þ t � b� YCÞr32 þ ðZA þ t � c� ZCÞr33

ð3Þ

with xp, yp an observed edge point, f the focal length,

rij the elements of the orthogonal rotation matrix, and

XC, YC, ZC the coordinates of the perspective center. In

addition to the six exterior orientation parameters, we

have also the line parameters t as unknowns to be

estimated. Considering the degrees of freedom of two

for straight 2D lines, another independent observation

equation of the form 3 can be formed. Not surpris-

ingly, three non-collinear control lines2 are needed to

determine the exterior orientation parameters. Observ-

ing more than two points on an image line does not

reduce the rank deficiency but increases the redun-

dancy and thus positively influences the accuracy.

Note that even if only one point per line is used, the

orientation can be solved. However, we would need

six control lines in that case.
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2.2.3. Discussion of the two approaches

The coplanarity approach is intuitively simple.

Nevertheless, it has several disadvantages. For one,

it restricts the shape of features to straight lines. In

contrast, the collinearity model can easily be extended

to higher-order features, for example, conic sections,

polynomials, or any 3D curve that allows a parametric

representation. For an extensive discussion of this

subject, the reader is referred to Zalmanson (2000).

Another major difference between the two meth-

ods lies in the representation of the feature in image

space. The coplanarity model requires a straight

image line while the collinearity model works with

any point of the image line, for example, edge

pixels. Usually, it is not possible to determine

straight lines in images directly. Rather, straight lines

are obtained by a sequence of processes, such as

detecting, linking, and segmenting edges. The col-

linearity model can work with lower level primitives

(e.g., edge pixels), which may be advantageous at

times. On the other hand, it also copes with straight

lines by taking their end points. Using all pixels of

the image line or only the two endpoints of the fitted

line lead to identical results if the covariance matrix

of the line fitting process is used as the weight for

the two end points. In this way, the collinearity

model can be seen as combining the line fitting

process with the subsequent orientation and/or re-

construction task.
3. Line representation

Linear features are very prominent descriptors of

our physical world. Boundaries of man-made objects

can often be abstracted by straight lines. A straight

line is a fundamental primitive of feature-based pho-

togrammetry. In view of solving photogrammetric

problems, such as orientation and reconstruction, it

is important to have a good representation for a line.

This section summarizes desirable requirements for a

good representation, examines existing representa-

tions, and presents an optimal solution.

3.1. Requirements for optimal representation

To effectively solve the fundamental tasks of

orientation and reconstruction with straight lines, an
optimal line representation in Euclidean 3D space

should meet the following requirements:

� number of parameters should be equal to the

degrees of freedom of a 3D line,
� the representation should be unique and free of

singularities,
� there should be a one-to-one correspondence

between the representation and the definition of

the line, e.g., by one point and the direction,
� the four parameters should allow a meaningful

stochastic interpretation,
� the representation should be suitable for parametric

expression.

A straight line in 3D space has four independent

degrees of freedom. LetLbe a line defined by point p=

(Xp, Yp, Zp) and direction vector d=(a, b, c), referred to

as point-orientation definition, L(p, d). Let the same

line be represented in the four independent parameters

(e, f, g, h), for example. Then, a one-to-one correspon-

dence exists if the set of lines L{p, d} uniquely maps

into a set of lines L{e, f, g, h} and vice versa, without

the need for conditional interpretations or handling

special cases.

Another important criterion is a meaningful and

plausible interpretation of the stochastic properties of

the line representation. For example, it should be

possible to derive from the covariance matrix error

quantities that only reflect the geometry of the line

determination. Lines of the same precision should have

the same error estimates, regardless of their position

and orientation in the 3D coordinate frame.

3.2. Typical representations used in photogrammetry

The standard representation used in photogram-

metry is the point-orientation definition, L (p, d).

This is not a unique solution because there are an

infinite number of points that can be chosen, and

many ways to represent the direction. To make it

unique, two constraints are added, one related to the

selection of the point (e.g., nearest point to origin,

expressed by p�d=0). The second constraint resolves

the direction and sign ambiguity. Compared with a

four-parameter representation, the point-orientation

form with six parameters and two constraints is

unnecessarily complicated. Moreover, the stochastic
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interpretation is not unique as it depends on the

choice of p.

Four-parameter representations have also been pro-

posed. Zielinski (1993) uses three angles and a

distance. The polar coordinates of a point on a 3D

line closest to the origin determine three parameters.

The third angle is defined in the plane that is perpen-

dicular to the direction from the origin to the closest

point. Obviously, this four-parameter representation

degenerates for lines passing through the origin or

intersecting with the Z-axis. Other four-parameter

representations are based on the intersection of two

planes. Ayache and Faugeras (1989) suggested using

one plane parallel to the x-axis and the other plane

parallel to the y-axis. This representation is flawed by

singularities for it cannot represent lines that are

perpendicular to the z-axis. In addition, the stochastic

properties of this representation are not transparent.

3.3. Optimal representation

Following Roberts (1988), the proposed represen-

tation of a line is based on two orientation parameters

and two positional parameters. The two orientation

parameters obviously express the direction of the line.

To envision the two positional parameters, imagine a

plane perpendicular to the line and passing through

the origin of the coordinate system. The line intersects

this plane at a point whose position forms the remain-

ing two parameters. Note that this point is the closest

point to the origin.
Fig. 2. Illustration of the concept of the four-parameter representation. Two

plane perpendicular to it defines the two positional parameters. The line i
Let L be a line given in a 3D Cartesian coordinate

frameO-XYZ. LetO-XVYVZVbe a coordinate framewith

the same origin but rotated such that its Z V-axis
becomes parallel to L. The rotation between the two

coordinate frames is defined by the two angles that

specify the line direction. The third angle, namely, the

rotation about the line itself, is irrelevant and can be

fixed, for example, by setting it to zero.

A suitable selection of two independent angles is the

conversion of Cartesian coordinates to spherical coor-

dinates. Let / denote the azimuth (longitude) and h the

zenith (90jminus latitude). These two angles, bounded

by 0V/V2p and 0VhVp, uniquely define all possible

directions of line L. Note that for vertical lines to the

X,Y-plane, the undefined azimuth is set to zero.

Line L intersects the X VY Vplane. Let (xo, yo) be
the coordinates of this intersection in the O-X VY VZ V
system. Then, the 4-tuple (/, h, xo, yo) is the four-

parameter representation. Fig. 2 illustrates the con-

cept. This representation, denoted by L{/, h, xo, yo},
is simple, aesthetically pleasing, and has a unique one-

to-one mapping. Moreover, it gives equal importance

to angles and positions—an advantage that is partic-

ularly evident in performing elementary transforma-

tions with the line, and in the stochastic interpretation

of the line parameters.

3.3.1. Mapping between point-orientation and four-

parameter representation

Given is a line L in its point-orientation form

L{p, d} as defined above. To find the line’s four-
parameters define the direction of line L, and its intersection with a

s uniquely represented by the 4-tuple (/, h, x0, y0).
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parameter representation, we proceed as follows.

The direction vector d is converted to spherical

coordinates /, h, q, with / the azimuth, h the

zenith angle, and q the radius of the sphere. The

radius is not needed, hence d does not need to be a

unity vector. With the two angles we form rotation

matrix R/h

R/h ¼
coshcos/ coshsin/ �sinh

�sin/ cos/ 0

sinhcos/ sinhsin/ cosh

2
64

3
75 ð4Þ

R/h rotates point p of the point-orientation form

into the new coordinate system whose z-axis is

parallel to the straight line. Then the rotated point

vector pV is expressed by:

pV¼ R/hp ¼
xo

yo

z

2
4

3
5 ð5Þ

In fact, any point pi=(Xi, Yi, Zi) on the line will

render the same planimetric coordinates (xo, yo) but a

different z-coordinate. We realize that zi can be viewed

as the parameter in the parametric form of the line

representation. Hence, the parametric form of the line

representation is symbolically denoted by L{/, h, xo,
yo, z}.

The inverse relationship of Eq. (5) maps any

point in the four-parameter representation to a
Fig. 3. Illustration of random errors of a line segment. The errors on the

midpoint of the line segment, obtained by error propagation, can be conc

depicted in (b).
unique point in the original point-orientation form

of line L:

p ¼ RT
/hpV¼

X

Y

Z

2
64

3
75

¼
coshcos/ � xo � sin/ � yo þ sinhcos/ � z
coshsin/ � xo þ cos/ � yo þ sinhsin/ � z
�sinh � xo þ cosh � z

2
64

3
75 ð6Þ

3.3.2. Stochastic interpretation of proposed

representation

Suppose a straight line is measured on n>2 images.

Let us for a moment assume that the orientation of the

images is known, including their standard deviations.

Let us further assume that the measurements also have

random errors. Employing an adjustment procedure

will yield estimates of the four line parameters. More-

over, the covariancematrix will contain information for

a statistical analysis. Can we derive error properties for

a line in order to judge if the results are satisfactory?

Here follows a geometric interpretation. The errors

on / and h can be conceived as a cone whose axis is

identical to the direction of the line. Since the two

angles are spherical coordinates, one can imagine an

error figure on the sphere. The error figure is centered at

/, h. The line ‘‘wiggles’’ within this error figure, but

the center is fixed. Fig. 3 depicts a graphical interpre-

tation of these errors.
two angles /, h describe a cone, shown in (a). The errors on the

eived as an error ellipse. The combination of these error sources is
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The errors on the location parameters xo, yo are

described by an error ellipse. Unfortunately, they

depend on the coordinate system. However, we never

have infinitely long straight lines in reality. For exam-

ple, lines that represent object boundaries are of finite

length. Thus, it makes sense to consider line segments.

In turn, this suggests determining the errors of the

midpointM of the line segment. This is readily accom-

plished by way of error propagation, using the 4	4

covariance of the adjusted line and Eq. (6) that

expresses M as a function of the estimated line param-

eters. Then, the combination of these errors would lead

to a cone that is moved around the error ellipse derived

for mid-point M (see Fig. 3).

Normally, the 4	4 covariance matrix of a tie line is

obtained from the block adjustment. An interesting

situation arises if the stochastic properties are to be

derived from a priori information about a straight line.

Such is the case for known lines that may enter the

adjustment as control lines. We derive the covariance

matrix of control lines from two known points and their

covariances in Section 4.2.2.1.

Obviously, this geometric interpretation of the

errors of the line parameters gives only an approxi-

mate description of the errors. A more correct error

figure would be obtained by determining the variance

covariance matrices for many points on the line. For

more details, the interested reader is referred to

Schenk (2004, chapter 19).
4. Block adjustment with lines

In the previous section, we have laid the foundation

for using straight lines in aerial triangulation. Follow-

ing the discussion of the coplanarity vs. collinearity

approach, we favor the latter because it is more general

and simpler to implement. We first derive an extended

collinearity model capable of handling control and tie

lines and sketch the adjustment model.
u ¼ ðcoshcos/ � xo � sin/ � yo þ sinhcos/ � z� XCÞr11 þ ðcoshsin/ � xo þ
v ¼ ðcoshcos/ � xo � sin/ � yo þ sinhcos/ � z� XCÞr21 þ ðcoshsin/ � xo þ
w ¼ ðcoshcos/ � xo � sin/ � yo þ sinhcos/ � z� XCÞr31 þ ðcoshsin/ � xo þ
4.1. Extended collinearity equations

To accommodate linear features in the collinearity

model, it is of paramount importance to represent the

feature in parametric form. Parametric representations

of features in object space allow the specification of any

point on the feature. In the case of the collinearity

model, we are seeking the closest point on the feature to

the projection ray.

Recall that Eq. (6) defines a parametric represen-

tation of 3D straight lines. It expresses the relationship

between an arbitrary point p on the 3D line and the

four-parameter representation. We give this equation

again since it is the starting point for deriving the

extended collinearity equations.

X

Y

Z

2
4

3
5 ¼

coshcos/ � xo � sin/ � yo þ sinhcos/ � z
coshsin/ � xo þ cos/ � yo þ sinhsin/ � z
�sinh � xo þ cosh � z

2
4

3
5

ð7Þ

Eq. (7) explicitly describes the coordinates (X, Y, Z)

of an arbitrary point on the straight line as a function

of the four parameters (/, h, xo, yo) of the line, which
is parameterized in the real variable z.

Let

x ¼ �c
u

w
y ¼ �c

v

w
ð8Þ

denote the standard collinearity equations for points

with x, y the refined3 photo coordinates, c the cali-

brated focal length, and with

u ¼ ðX � XCÞr11 þ ðY � YCÞr12 þ ðZ � ZCÞr13

v ¼ ðX � XCÞr21 þ ðY � YCÞr22 þ ðZ � ZCÞr23

w ¼ ðX � XCÞr31 þ ðY � YCÞr32 þ ðZ � ZCÞr33 ð9Þ

Substituting (X, Y, Z) in Eq. (9) by the expressions

found in Eq. (7) leads to
cos/ � yo þ sinhsin/ � z� YCÞr12 þ ð�sinh � xo þ cosh � z� ZCÞr13
cos/ � yo þ sinhsin/ � z� YCÞr22 þ ð�sinh � xo þ cosh � z� ZCÞr23
cos/ � yo þ sinhsin/ � z� YCÞr32 þ ð�sinh � xo þ cosh � z� ZCÞr33

3 Photo coordinates reduced to principal point, corrected for

radial distortion and atmospheric refraction.

ð10Þ
Entering u, v, w of Eq. (10) in Eq. (8) leads to

the modified collinearity equations. They contain

the four line parameters /, h, xo, yo, parameter z,
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and the exterior orientation parameters (perspective

center XC, YC, ZC and attitude matrix with the

elements r11, . . ., r33).

4.2. Adjustment model

The extended collinearity equations for straight

lines express observations (point coordinates of mea-

sured features) as a nonlinear function of orientation

parameters and line parameters. After linearization of

Eq. (10) with respect to the parameters, we can

employ the Gauss–Markov model for estimating the

unknowns.

y ¼ An þ e; efð0; r2
oP

�1Þ ð11Þ

with y the observation vector, A the design matrix, n
the parameters to be estimated, and with e the error

vector. The parameters are estimated such that the

collinearity equations are satisfied by minimizing the

square sum of the residuals of the points measured on

image lines.

Let us arrange the parameters into three groups: nE
contains the exterior orientation parameters, nL the

line parameters, and nZ the point parameters. We also

add control information to remove the rank deficiency

associated with the normal equation system obtained

from Eq. (11). Control information may enter the

adjustment model through stochastic constraints on

either nE (e.g., in direct orientation) or nL (e.g., control
lines).

Eq. (11) is now partitioned as follows

yE
yL
yZ

2
4

3
5 ¼

AE AL AZ

0 AC
L 0

AC
E 0 0

2
664

3
775

nE

nL

nZ

2
64

3
75þ

eE

eL

eZ

2
4

3
5 ð12Þ

where

� AE is a 2�p	6�n matrix containing the partial

derivatives of the extended collinearity equations

with respect to the exterior orientation parameters

while nE contains the changes to the parameters,
� AL is a 2�p	4�m matrix containing the partial

derivatives of the extended collinearity equations

with respect to the line parameters while nL
contains the changes to the parameters,
� AZ is a 2�p	 p matrix containing the partial

derivatives of the extended collinearity equations

with respect to parameter Z while nZ contains the

changes to the parameters,
� AE

C is a r	6�r matrix containing the stochastic

constraints on the exterior orientation parameters,
� AL

C is a s	4�s matrix containing the stochastic

constraints on the line parameters (control lines)

and with n number of images in block adjustment; m

number of lines in block adjustment; p total number of

measured points on image lines; r number of stochas-

tic constraints on exterior orientation parameters; s

number of stochastic constraints on line parameters

(control lines).

With the notation of Eq. (12), the following normal

equations are obtained:

NEE þ NC
EE NEL NEZ

NT
EL NLL þ NC

LL NLZ

NT
EZ NT

LZ NZZ

2
6664

3
7775

n̂E

n̂L

n̂Z

2
6664

3
7775 ¼

cE

cL

cZ

2
64

3
75

ð13Þ

NEE and NLL are diagonal matrices with 6	6 and

4	4 submatrices, respectively. NZZ is purely diago-

nal with 2	p elements. This special structure allows

algebraic elimination of one of the parameter vec-

tors. Considering the size, it is suggested to elimi-

nate nZ. Note that NEE
C and NLL

C contain the

contributions from control information brought into

the system by stochastic constraints (pseudo obser-

vations) on the orientation parameters and line

parameters.

4.2.1. Redundancy considerations

Let us briefly discuss the redundancy budget.

Every tie line has four parameters and every point

measured on a tie line adds one additional parameter

(z-parameter). Let n be the number of points measured

on an image line and m the number of images in

which the tie line is measured. Then we have 2�n�m
equations and 4+n�m unknowns, resulting in a redun-

dancy of r=n�m�4. Since the degrees of freedom of a

2D line are four, only two points per image line are

independent, that is r=2�m�4. Measuring a tie line on

two images (m=2) is just enough to determine the four
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line parameters—no redundant information is avail-

able towards the computation of the orientation

parameters. This confirms that the orientation of two

images (relative orientation) with straight lines is not

possible, except when using epipolar lines. To con-

clude, a tie line must appear on at least three images to

make a contribution towards the orientation parame-

ters—in other words, to tie the images together. We

call this contribution the information content, ic, of a

tie line, rather than redundancy.

Suppose now that there are t tie lines per image.

Then the information content will be ic=t(2�m�4) for t

tie lines that appear on m images. Considering that

every image has six exterior orientation parameters,

we can easily determine how many tie lines are

needed to completely orient the images. Take the case

of an image triple, for example. Its relative orientation

involves 3	6�7=11 unknowns. Hence, six tie lines

suffice to orient the triplet, because the information

content will be ic=6(2�3�4)=12.

Tie points contribute r=2�m�3 to the redundancy

budget, that is, one more independent equation

compared to tie lines. There is a huge difference

between tie lines and tie points, however. Tie points

must be identified (matched) on all images involved

while points on tie lines can be measured monoc-

ularly. Moreover, tie lines are not restricted to the

physical overlap of images, for they can be mea-

sured on all images with a partial projection of the

tie line.

4.2.2. Control information

Control information refers to object space knowl-

edge about lines and their relationships, or to infor-

mation about the exterior orientation parameters (e.g.,

in case of direct orientation). This knowledge is

usually explicitly available prior to aerial triangula-

tion. It is also conceivable to apply general knowl-

edge, for example, that lines with a certain orientation

and distance between them should be parallel (e.g.,

railway tracks, vertical building edges). In this case,

parallelism could be enforced after incidences of the

general knowledge are found in the actual data set

after a first adjustment.

Control information about lines enters the adjust-

ment model through stochastic constraints on the line

parameters nL. Therefore, control lines must be rep-

resented in the same four-parameter representation as
tie lines. Control information may be available for all

four parameters, referred to as full control line, or only

for the direction of the line, appropriately called

partial control line.

4.2.2.1. Full control lines. Suppose a full control

line is defined by the two known points A and B.

Then the problem is to convert the two-point

representation to the desired four-parameter repre-

sentation. After determining the direction vector

from A and B, parameters /, h are readily obtained

by converting the direction vector to spherical

coordinates. Eq. (5) computes the two remaining

parameters. Control line Lc is now represented by

the 4-tuple (/, h, xo, yo).
In order to express uncertainties of Lc , the

following procedure is suggested. Let rA and rB

be the variances of the two points A and B that

define Lc. Let M be the mid-point of line segment

A, B. Eq. (7) expresses the coordinates of an

arbitrary point on the line as a function of the four

parameters /, h, xo, yo and the line parameter z.

This can be conceived as a Gauss–Markov model

where the two endpoints A and B of the control

line yield six equations with four unknown line

parameters and the two unknown zA, zB parameters.

After forming the normal equations, zA, zB can be

eliminated and the inverse of this system is the

covariance matrix of the line parameters.

4.2.2.2. Partial control lines. It is quite conceivable

that for certain straight lines only the orientation is

known. Examples include vertical lines, such as edges

of buildings, or horizontal lines, either with known or

unknown orientation (azimuth) in the X,Y-plane of the

object space reference frame. The stochastic con-

straints for partial control lines are:

vertical lines : n/ ¼ 0þ e/; nh ¼ 0þ eh ð14Þ

oriented horizontal lines: n/ ¼ azimuthþ e/;

nh ¼ p=2þ eh ð15Þ

horizontal lines : nh ¼ p=2þ eh ð16Þ

4.2.2.3. Parallel lines. Other useful object space

knowledge are parallel lines. Here, the position and

the orientation are unknown, but the knowledge that
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two tie lines are parallel can be considered with the

following stochastic constraints:

n/i
� n/j

¼ 0þ e/i
þ e/j

; nhi � nhj ¼ 0þ ehi þ ehj

ð17Þ

If the distance between the two parallel lines is

known, then this can also be easily formulated as a

stochastic constraint, in addition to Eq. (17). As these

examples demonstrate, the proposed four-parameter

representation of 3D lines lends itself to simple

formulations for entering complex object space

knowledge.
5. Experimental results

A small block with six images, 60% overlap and

30% strip overlap, serves as an example to demon-

strate the feasibility of the proposed feature-based

aerial triangulation method. The large-scale images,

scale approximately 1:3800, cover part of the OSU
Fig. 4. Block configuration with six images and the tie lines used for the blo

are used. The image patches covering the six-overlap area are shown toge
campus with many man-made objects. The aerial film

was scanned with 15 Am pixelsize, but for the experi-

ments, this size was doubled. Hence, one pixel corre-

sponds to approximately 0.11 m on the ground. Fig. 4

provides an overview and also depicts the tie lines that

have been used in the block adjustment instead of tie

points.

A Canny edge operator with a length specification

of minimum 200 pixels was used to determine raw

edges. Fig. 5 depicts the image patches of the 6-

overlap area with the raw edges superimposed. From

all these edges, we manually selected a few tie lines

and established the correspondences between the

different images. Since tie lines should appear on

more than two images to contribute toward the orien-

tation of images, we have only selected tie lines in the

3-overlap areas of strips, and in the 4-overlap and 6-

overlap areas between strips. Fig. 4 shows the selected

tie lines in these areas and Table 1 lists the number of

tie lines and number of independent equations.

We briefly comment on the five tie lines in the 6-

overlap area. They are annotated in both Figs. 4 and 5.
ck adjustment. Only tie lines in the three, four, and six-overlap areas

ther with extracted edges in Fig. 5.



Fig. 5. The six image patches show the area covered by six photographs. Superimposed are the edges as obtained with the Canny operator. Five

edges that appear on all six images are manually selected as tie lines. These selected tie lines are numbered 1 to 5 and also shown in Fig. 4.

Table 2

Tie lines in the six-overlap area

Tie Total Edge length in images [pixels]

line length
163 165 167 195 197 199
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Tie line 2 is a slanted roof edge of a building with a

saddle roof. Tie line 1 is the horizontal continuation of

the roof edge of the same building. Tie line 3 is the

border of walkway. Tie lines 4 and 5 are again

horizontal roof edges. Table 2 contains the length of

the edges in the six images and also the total length of

the tie line in object space, but expressed in image

pixels. To convert the length into metric units, multi-

ply the numbers by 0.11 m. As shown in detail in
Table 1

Tie lines in the three, four, and six-overlap areas

Overlap area Number of tie lines Independent equations

3 14 168

4 11 176

6 5 120

Total 30 464
Schenk (2004, chapter 19), the ratio of the length of a

tie line in an image and the total length of the tie line

segment is a major factor that determines the accuracy
1 152 98 140 139 148 152 88

2 752 572 360 432 220 488 312

3 352 200 292 136 212 292 188

4 972 588 964 972 714 972 972

5 972 480 744 748 581 760 304

The second column contains the length of the tie line in object space

but expressed in pixels. The length of each tie line in the six images

is listed in columns 3–8. Among other factors, the length of the

image lines determines the accuracy of the adjusted tie lines (see

text for more details).
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of a tie line. For example, image 199 contributes least

to tie line 5 as the ratio is only 0.31.

We have approximated the raw edges of the tie

lines by straight lines and used their endpoints for the

collinearity equations (Eq. (10)). The weight was

obtained from the line fitting process. The example

block involves a total number of 30 tie lines. Column

3 of Table 1 lists the number of equations resulting

from the 30 tie lines that are partially imaged in 3, 4,

or 6 images. The total number of unknowns is

u=6	6+30	4+116	2=388. Thus, our sample block

has a redundancy of r=464�388=76.

Since the sample block is very small, we have

used a free block adjustment by fixing the six

exterior orientation parameters of image 165 and

the scale. The normalized normal equation system

has a relatively low condition number (j=1.2	103)

which indicates that the geometry of this mini

block is good. The block adjustment also deter-

mines the four parameters of the tie lines as well as

the z-parameter for every measured point. As an

example of the precision of a (monocularly) mea-

sured point on a tie line, we give the variance

covariance matrix of one of the endpoints of tie

line 4, measured in image 165.

3:25085eþ 006 �1:62543eþ 007 �3:58657eþ 006

�1:62543eþ 007 8:12713eþ 007 1:79328eþ 007

�3:58657eþ 006 1:79328eþ 007 1:44367eþ 007

2
66664

3
77775

This matrix was obtained by error propagation,

using Eq. (7) to build the partial derivatives with

respect to the parameters h, /, xo, yo, z of line 4.

This matrix determines the variances and covarian-

ces among the three point coordinates. For exam-

ple, the standard deviation of X would amount to

10�5 	
ffiffi
ð

p
3:25085eþ 006Þ ffipc0:02 m, where 10

Am is the variance component. As one would

expect from the orientation of tie line 4 (nearly

parallel to the Y-axis of the object space coordinate

system), the standard deviation c0.09 m for Y is

considerably larger.

Future experiments will be concerned with estab-

lishing ground truth of tie lines to provide a

realistic measure of the accuracy of tie lines in

object space.
6. Summary and concluding remarks

The motivation for the research reported here is

the attempt to treat tie lines in the same fashion as

tie points. That is, the tie line parameters appear

explicitly in the adjustment, just as the coordinates

of tie points do. This requires a unique representa-

tion for 3D lines. Section 3 introduced a four-

parameter representation that lends itself to a pa-

rameterized form and to a meaningful stochastic

interpretation of the four line parameters. In partic-

ular, for every measured point on a tie line, the

variance covariance matrices can be computed,

leading to a point-wise, discrete error characteriza-

tion of tie lines.

In comparing feature-based with point-based aerial

triangulation we note these distinct differences:

� Feature-based aerial triangulation does not require

conjugate points. Thus, it circumvents the thorny

issue of matching points in multiple images.

Instead, a more robust feature-matching scheme

can be employed.
� In feature-based aerial triangulation, the overlap

conditions of images are relaxed. In fact, tie lines

can ‘‘tie’’ images together that do not overlap at all.
� Feature-based aerial triangulation offers more

flexibility in incorporating object space knowl-

edge. This is a distinct advantage when consid-

ering existing GIS with known information about

straight lines.
� Feature-based aerial triangulation offers a greater

potential for automation than point-based methods.

The proposed collinearity approach compares fa-

vorably with the coplanarity method, the preferred

method in line photogrammetry. Specific advantages

include:

� The collinearity approach can be extended to

curves, such as conic sections and 3D space

curves. In contrast, the coplanarity approach is

limited to straight lines.
� The tie lines are uniquely represented by four

parameters which enter the adjustment directly as

unknowns. The coplanarity approach usually

employs a six-parameter model with two con-

straints for an unambiguous representation. This
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seems unnecessarily complicated, also in view of

the stochastic interpretation of adjusted lines.
� The proposed approach handles object space

knowledge in the form of stochastic constraints

on the line parameters very effectively. The

aesthetically pleasing model is transparent and

accommodates various forms of control informa-

tion, for example, full and partial control lines,

parallel lines, with or without known distance.
� The collinearity approach is in essence an (image)

point to a 3D line relationship. In contrast to the

coplanarity approach, it does not require straight

lines in the images. If used for every edge pixel, the

proposed approach can be seen as a simultaneous

combination of line fitting with orientation.

Line-based aerial triangulation will foster new

applications. An increasing number of mapping proj-

ects are being carried out over areas with existing

information, for example, for the purpose of map

revision. Existing GIS information may furnish abun-

dant control information, and the proposed method

with its capability to stochastically model and analyze

lines offers the potential to register new imagery to

existing GIS data bases in an optimal fashion. Another

interesting aspect of feature-based aerial triangulation

is the combination with surface reconstruction. The tie

lines are potential candidates for breaklines. Theoret-

ically, a surface is reconstructed if all its breaklines

(discontinuities in the surface function) are known

because between breaklines, surface elevations can be

predicted.

Realizing that we are just at the beginning of a

truly feature-based aerial triangulation, it is no sur-

prise that much more needs to be done. A major area

of concern is the matching of linear features. Al-

though numerous researchers have proposed feature-

based matching methods, the problem of finding

correspondences in multiple images has hardly been

addressed. To come up with good initial estimates of

the parameters in a highly nonlinear problem, such as

aerial triangulation, is another concern.
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