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Abstract— This paper is concerned with fusing aerial imagery,
LIDAR point clouds, and hyperspectral imagery for the purpose
of automated urban mapping. Instead of performing traditional
supervised and unsupervised classification of hyperspectral data
we propose a region growing approach from seed pixels that
originate from fusing LIDAR and aerial imagery. This requires
a thorough alignment of all sensors involved—a problem that
is solved with sensor invariant features. The common system
is the geodetic reference frame in which the LIDAR points
are computed. The alignment results in transformations from
sensor space to object space and back, avoiding resampling the
sensor data. After describing the major aspects, an example
demonstrates the feasibility of the proposed fusion approach.

I. INTRODUCTION

By combining sensors that use different physical principles
and record different properties of the object space, com-
plementary and redundant information becomes available. If
merged properly, multisensor data may lead to a more stable
and consistent scene description. The cardinal question of
future research is how to exploit the potential these different
data sources offer in order to tackle object recognition more
effectively. Ideally, proven concepts and methods in remote
sensing, digital photogrammetry and computer vision should
be combined in a synergistic fashion. In this paper, we propose
a unified framework for object recognition and multisensor
data fusion for reconstructing urban scenes.

Photogrammetry is the traditional method of surface recon-
struction such as the generation of DTMs. Recently, LIDAR
emerged as a new technology for rapidly capturing data of
physical surfaces. The high accuracy and automation potential
enables a quick delivery of DEMs/DTMs derived from the raw
laser data for urban areas. Multispectral and even multisensor
data can provide further clues about surface properties, such
as composition, roughness and slope.

The increasing spatial resolution and accuracy, together
with the rich information content of hyperspectral image data
opens new avenues for automating surface reconstruction and
object recognition of urban environments. Most researchers
use proven processing techniques, such as image enhancement,
computation of spectral indices, spectral unmixing and pattern-
recognition, for extracting information from hyperspectral
imagery (for example [8] and [5]). The interpretation of the

data set usually ends with classifying the pixels into different
cover types, or with the determination of the percentage
of cover types by using subpixel estimation techniques. To
increase the reliability and robustness of classification many
researchers favor supervised techniques. These techniques are
comparable to early vision processes and they work efficiently
on data sets with low spectral dimensions, such as Landsat
or SPOT satellite imagery. However, when increasing the
number of channels, two problems arise: the classification
time increases significantly and there may be not enough
training pixels in small classes for reliably estimating the class
statistics. Band reduction techniques and multistage algorithms
are recommended to overcome these limitations ([4], [7] and
[2]).

Unfortunately, the use of supervised classification reduces
the degree of automation. Also the interactive training is
tedious, time consuming, and subjective. Moreover, the band
reduction techniques usually rely on the statistics of the whole
image, therefore spectral signatures caused by small objects
are not well preserved. spectra

This paper suggest to use the explicit surface description
obtained from LIDAR data and aerial photography by seg-
mentation and grouping processes to guide the segmentation
of the hyperspectral data set. Photogrammetry, LIDAR map-
ping and hyperspectral imaging deliver complementary surface
information. Thus it makes sense to combine data from the
different sensors to arrive at a more robust and complete
surface reconstruction.

II. MAPPING URBAN SCENES BY SPECTRAL IMAGING

The majority of multi- and hyperspectral sensors (also called
imaging spectrometers) sample the reflective portion of the EM
spectrum that extends from the visible region (0.4-0.7 µm)
through the near-infrared (about 2.5 µm). Spectral reflectivity
of the ground materials can be inferred from the measured
signal. Hyperspectral sensors measure the spectral irradiance
at the sensor in many, often in hundreds, of narrow, contiguous
spectral bands. Multispectral sensors have fewer discrete, wide
spectral bands. The scanning principle of spectral imaging
sensors includes pushbroom (linescanner), or whiskbroom
(rotating mirror, similar to laser scanning).



Spectral imaging dates back to the first Landsat satellite pro-
gram, which started in 1972. Its synoptic, repeat coverage, and
the spectral information made the Landsat and other satellite
imagery ideal for earth science applications and for mapping
land cover changes. The low spectral and spatial resolution of
these images did not allow detailed mapping of urban areas,
however. Hyperspectral sensors depict important details of the
EM spectrum, such as the shape of narrow absorption bands
allowing delineation and in some cases even identification
of surface materials. This capability taken together with the
few meter spatial resolution will make airborne hyperspectral
sensors suitable for providing surface composition information
to urban mapping.

The traditional procedure to map surface materials from
hyperspectral imagery starts with dimensionality reduction
followed by supervised classification. Landgrebe [5] reduced
the number of bands by analyzing the spectral characteristics
and separability of the classes defined by the training samples.
The classification was performed by a spectral and spatial
quadratic maximum likelihood classifier. McKeown et al., [8]
simply averaged the reflectivity of neighboring spectral bands
prior to applying a spectral maximum likelihood classification.
Both authors pointed out the importance of careful and tedious
training and the large number of subclasses needed to describe
the variety of different roof and road materials. The spatial
resolution of most hyperspectral data sets is a few meters and
therefore they may not able to depict the details of small
urban structures. To deal with the large number of mixed
pixels over object boundaries, Roessner et al., [10] developed
a technique that combines the advantages of classification with
linear spectral unmixing. Unlike these supervised methods the
Gibbs-based algorithm developed by Rand and Keenan [9] is
suitable for automation. This algorithm, using spectral angle
as disparity metric and a random initialization, partitioned
moderate-high scene complexity test images into homoge-
neous, structured regions of different urban and natural objects.

III. PROPOSED FUSION SCHEME

Over the years, several fusion models and archtictures for
fusion system have been introduced. The Joint Directors of
laboratories (JDL) Data Fusion Working Group created a
data fusion process model and undertook efforts to unify
terminology. An excellent overview of this model and its
variants is presented in [3]. Other efforts to categorize fusion
include attempts to break it down into the three levels of data
fusion, information fusion, and decison fusion.

In contrast to existing data fusion models, we propose a
clear separation between fusion processes (functionality) and
fusion tasks (applications). The motivation for this distinction
stems from the observation that fusion tasks such as sensor
alignment, surface reconstruction, object extraction and iden-
tification, are independently solved by employing the same
fusion functionality.

Fig. 1 depicts the flowchart of the proposed multisensor
fusion framework. The processes on the left side are devoted
to establishment of a common reference frame for the sensory

input data. The result is a unique transformation between the
sensor systems and the reference frame.
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Fig. 1. Schematic diagram of a feature based fusion system.

The establishment of a common reference frame is an
absolute prerequisite. We solve this alignment problem by
utilizing sensor-invariant features. Such features correspond to
the same object space phenomena, for example to breaklines
and surface patches. Matched sensor invariant features from
the three different data sets lend themselves to establishing a
common reference frame.

Feature-level fusion of the LIDAR and the aerial imagery is
then performed with sensor specific features that are related to
surface characteristics. Details of the proposed approached are
described in [11]. We have shown that the synergism between
these features resulting in a richer and more abstract surface
description.

This explicit surface description obtained from LIDAR data
and aerial photography by segmentation and grouping pro-
cesses is used to guide the segmentation of the hyperspectral
data set. First seed pixels are selected in object space based
on the surface description derived from the LIDAR data and
the aerial photography. A region growing algorithm is then
applied to find uniform regions within the hyperspectral data
set. Results from the hyperspectral segmentation are fused with
features extracted from the aerial imagery and the LIDAR data
set to improve the surface description.

The fusion process is embedded in an inference scheme.
For example, unlike in traditional classification, labels of land-
cover types are not assigned to each pixel, but to the regions
detected by region growing. To make the labeling process
more robust additional (non-spectral) information, for example
elevation data and edges extracted and grouped from aerial
imagery are also considered. During the inference process, hy-
potheses are formed about objects and their interrelationships.
An important aspect is the verification of these hypotheses, for
example by examining interrelationships among objects or by
testing alternative hypothesis. At this stage it may be necessary
to go back to the original data with expectations what to look
for. As an example, a new segmentation of the hyperspectral
scene may be started with modified parameters that take into



account the current knowledge about the scene.

IV. STUDY AREA, DATA AND PREPROCESSING OF
HYPERSPECTRAL IMAGERY

We demonstrate the feasibility of the proposed fusion ap-
proach by using data from the Ocean City test site. Aerial
photography, laser scanning data, and multispectral imagery
were collected on April 25 and 30, 1997. Details about the
data acquisition and processing are described in [1].

AVIRIS hyperspectral imagery were acquired on November
5, 1998, when the AVIRIS system was first deployed on a
relatively low altitude platform to collect high quality, high
spatial resolution imagery. The flight altitude of 4000 meter
resulted in a pixel size of about 3.8 meter. The AVIRIS sensor
is a whiskbroom imaging spectrometer using an oscillating
mirror to cover a 30 degree field of view at a rate of 12
Hz. Upwelling radiance is measured through 224 contiguous
spectral channels at 10 nm interval across the visible and near-
infrared spectrum. The processing of the AVIRIS data at JPL
included the rectification of raw images by estimating the ex-
terior orientation of each pixel from the scanner geometry and
GPS/INS data. To convert the radiance to surface reflectance
we applied empirical line calibration using field reflectance
data collected during the overflight.

The data set provided by hyperspectral sensors is a set
of coregistered imagery, one image for each spectral band.
A convenient way to visualize the data set is to use a data
cube, whose face is a function of spatial coordinates and the
depth is a function of the spectral band or wavelength. That
is a spectrum, characterizing the materials within the pixel is
provided for each image pixel. The organization and the rich
information content of the data set is illustrated in Fig. 2
and Fig. 3 .

Fig. 2. AVIRIS image cube from a sub-scene of the Ocean City imagery.
Cover plane is a simulated color infrared image from bands 15 (0.51 µm),
25 (0.61 µm)and 45 (0.78 µm). Coloring on sides shows reflectance (warm
colors=high reflectance).

Fig. 3. Spectra of common urban materials from the AVIRIS scene.

V. FUSION OF AERIAL PHOTOGRAPHS, LIDAR AND
HYPERSPECTRAL DATA SETS

In this section we briefly explain the major processing steps
and demonstrate the feasibility of the proposed approach to
reconstruct surfaces of the Ocean City scene.

A. Establishment of A Common Reference Frame

The first step in our fusion approach involves the estab-
lishment of a common reference frame for the sensory input
data. This entails a geometric transformation, accomplished
with features extracted from the sensors that are also known
in object space. Hence, the sensors to be aligned must partially
respond to the same phenomena in object. Such features are
called sensor invariant in this paper.

First we oriented the aerial photographs with respect to the
laser point cloud by using sensor invariant features, including
straight lines and surface patches ([11]). The AVIRIS scene
distributed by JPL was registered to a flat earth. While this
may suffice for satellite imagery with relatively coarse ground
resolution, it does not meet the requirements of large-scale,
urban fusion applications. To derive the transformation, the
geometry of the whiskbroom scanner is emulated by that of a
line scanner. The advantage of this approach is that existing
solutions for orienting line scanners can be employed. As
shown in [6], every line of a line scanner can independently be
oriented by using linear features. In contrast to the traditional
direct solution that depends entirely on GPS/INS data, the indi-
rect solution uses the navigation data only as approximations.
Linear features in object space are slightly distorted in the line
image due to changes in the exterior orientation of every line.
For example, a straight line appears jagged or curved (Fig. 4).
The basic principle of the indirect line sensor orientation is to
change the orientation parameters of every line by minimizing
the shape differences between image and object space features.

B. Surface Reconstruction from Multiple Sensors

A small sub-area of the southern part of Ocean City is
selected to demonstrate the surface reconstruction (Fig. 5(a,b)).
It contains a large building with a complex roof structure,



Fig. 4. Salient features used for registration of AVIRIS scene. Linear feaures
are shown on the aerial imagery in Fig. 4(a). Corresponding features are
extracted from the AVIRIS scene by region growing (Fig. 4(b). Seed pixels
are selected within regions of low variance and the boundaries are refined by
dilation and skeleton definition.

surrounded by parking lots, garden, trees and foundation plants
that are in close proximity to the building.

The result of fusing aerial images and LIDAR data is shown
in Fig. 5(c). The regions 0 to 18 are planar surface patches
obtained from the perceptual organization of the laser points.
The straight edges are either from the stereopair or from
intersecting adjacent planar surface patches.

The AVIRIS scene reveals a variety of man-made materials
(roof tops, roads, boardwalks, etc.) with very different spectral
shapes and absorption bands (Fig. 3 ). The large number of
different spectral classes taken together with the small total
area of some object and the presence of mixed pixels would
pose a difficult problem for unsupervised classification. There-
fore we apply a simple region growing algorithm to segment
the AVIRIS scene into spectrally homogeneous regions. The
spectral similarity is measured by a spectral angular metric
(often called SAM). The SAM metric is a good indicator of
differences in spectral shape, while insensitive to brightness
differences.

To guide the region growing process, the surface patches
obtained by fusing the aerial images and lidar data (Fig. 5(c)
are back-projected to the AVIRIS scene using the geometric
transformation established between the different data sets
in Section V.A. Seed pixels are selected within the back-
projected patches (Fig. 5(d,e)). The regions of the segmented
hyperspectral scene in Fig. 5(f) correspond to the different
regions of the scene as it is verified by visual inspection of
the aerial photograph and by comparing it with the result of the
linear spectral unmixing of the AVIRIS subscene (Fig. 5(g,h)).
Finally, Fig. 5(i) shows the result of the fusion process. The
segmented surface (Fig. 5(c)) is now augmented with surface
property information, stemming from the region growing pro-
cess of the hyperspectral data.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for multisensor data
fusion that is particularly suited for urban mapping, using
the combination of aerial and satellite imagery, LIDAR point
clouds, and hyperspectral imagery. A key element is the sensor

alignment with rigorous transformations from sensor systems
to object space and back. This offers the advantage of working
with the raw sensory data, rather than with resampled data sets
that may suffer a potential loss in geometric and radiometric
resolution.

In order to avoid time consuming training sessions for
segmenting hyperspectral data we propose a region growing
approach that starts with seed regions obtained from the
perceptual organization of the laser point cloud and the fusion
of aerial imagery. This approach greatly facilitates automation,
an important objective of urban mapping. The region growing
approach takes all spectral bands into account and can be
driven by application know-how or scene knowledge gained
during the fusion process.

The precise registration of hyperspectral data is still quite
problematic, especially in the case of whiskbroom sensors. We
are currently investigating improved sensor models. Another
area that needs more attention is higher level reasoning to
better guide the the fusion processes.
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Fig. 5: Results of fusing hyperspectral imagery with aerial photograph photographs and lidar data. Fig. 5(a) shows the test
site of Ocean City on a color composite of three bands from the AVIRIS image and (b) depicts the subarea that was used to
demonstr ate the detailed surface reconstruction indicated by white box in a). In Fig. 5(c) the surface reconstructed from aerial
images and LIDAR data is shown from [11]. Fig. 5(d) shows the AVIRIS color composite of the subarea. Fig. 5(e) contains
the result of segmentati on of AVIRIS imagery obtained by region growing. Seed pixels are selected as centroids of the surface
patches reconstructed from LIDAR and aerial photographs (see also in Fig. 5(d)). Fig. 5(f) shows the spectra of the surface
material at the seed points marked in Fig. 5(d,e). Fig. 5(g,h) depicts the distribution of ’roof’ and ’vegetation’ from spectral
linear unmixing of the AVIRIS scenes by using ’roof’, ’asphalt’ and ’vegetation’ spectra for spectral endmembers. Fig. 5(i)
summarizes the results of the surface reconstruction. The color code of the region boundaries corresponds to: black: AVIRIS;
yellow and green : LIDAR and aerial imagery.


