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ABSTRACT
Photogrammetry is the traditional method of surface reconstruction such as the generation of DTMs. Recently, LIDAR
emerged as a new technology for rapidly capturing data on physical surfaces. The high accuracy and automation potential
results in a quick delivery of DEMs/DTMs derived from the raw laser data. The two methods deliver complementary surface
information. Thus it makes sense to combine data from the two sensors to arrive at a more robust and complete surface
reconstruction. This paper describes two aspects of merging aerial imagery and LIDAR data. The establishment of a
common reference frame is an absolute prerequisite. We solve this alignment problem by utilizing sensor-invariant features.
Such features correspond to the same object space phenomena, for example to breaklines and surface patches. Matched
sensor invariant features lend themselves to establishing a common reference frame. Feature-level fusion is performed with
sensor specific features that are related to surface characteristics. We show the synergism between these features resulting
in a richer and more abstract surface description.

1 Introduction

It has long been recognized that surfaces play an impor-
tant role in the quest of reconstructing scenes from sensory
data such as images. The traditional method of reconstruct-
ing surfaces is by photogrammetry. Here, a feature on the
ground, say a point or a linear feature, is reconstructed from
two or more overlapping aerial images. This requires the
identification of the ground feature in the images as well as
their exterior orientation. The crucial step in this process is
the identification of the same ground feature. Human oper-
ators are remarkably adept in finding conjugate (identical)
features. DEMs generated by operators on analytical plot-
ters or on softcopy workstations are of high quality but the
process is time and cost intensive. Thus, major research
efforts have been devoted to make stereopsis an automatic
process.

Recently, airborne and spaceborne laser altimetry has
emerged as a promising method to capture digital eleva-
tion data effectively and accurately. In the following we use
LIDAR (LIght Detection And Ranging) as an acronym for the
various laser altimetry methods. An ever increasing range
of applications takes advantage of the high accuracy poten-
tial, dense sampling, and the high degree of automation that
results in a quick delivery of products derived from the raw
laser data.

Photogrammetry and LIDAR have their unique advantages
and drawbacks for reconstructing surfaces. It is interest-
ing to note that some of the shortcomings of one method
can be compensated by advantages the other method of-
fers. Hence it makes eminent sense to combine the two
methods—we have a classical fusion scenario where the
synergism of two sensory input data considerably exceeds
the information obtained by the individual sensors.

In Section 2 we elaborate on the strengths and weaknesses
of reconstructing surfaces from LIDAR and aerial imagery.
We also strongly advocate an explicit surface description
that greatly benefits subsequent tasks such as object recog-
nition and image understanding. Useful surface characteris-

tics are only implicitly available in classical DEMs and DSMs.
Explicit surface descriptions are also very useful for fusing
LIDAR and aerial imagery.
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Figure 1: Flow chart of proposed multisensor fusion framework.

Fig. 1 depicts the flowchart of the proposed multisensor fu-
sion framework. Although we consider only LIDAR (L) and
aerial imagery (A) in this paper, the framework and the fol-
lowing discussions can be easily adopted for including ad-
ditional sensors, such as a hyperspectral system. The pro-
cesses on the left side of Fig. 1 are devoted to the estab-
lishment of a common reference frame for the raw sensory
input data. The result is a unique transformation between
the sensor systems and the reference frame. Section 3 dis-
cusses this part of the fusion problem in detail.

The processes on the right side of the figure are aimed at
the reconstruction of the 3D surface by feature-based fusion.
This task benefits greatly from having the sensory input data
(L’ and A’) aligned. Since the reconstructed surface is de-
scribed in the common reference frame, it is easy to go back
from object space to sensor space in order to extract specific



features that might be needed during the inference process
to validate hypotheses, for example. Section 4 provides a
more detailed discussion.

2 Background

In this section we briefly compare the advantages and dis-
advantages of the two most prominent methods for surface
reconstruction. We also elaborate on how to represent sur-
faces and emphasize the need for explicit surface descrip-
tions. Combining the advantages of LIDAR and stereo pho-
togrammetry is an interesting fusion problem.

2.1 Surface reconstruction

With surface reconstruction we refer to the process of deriv-
ing features in the 3D object space. The traditional method
of reconstructing surfaces is by photogrammetry. Here, a
feature on the ground, say a point or a linear feature, is re-
constructed from two overlapping aerial images—a process
known as stereopsis. This requires the identification of the
ground feature in both images as well as the exterior orien-
tation of the images. The crucial step in stereopsis is the
identification of the same ground feature, also referred to as
correspondence problem or image matching. Human oper-
ators are remarkably adept in finding conjugate (identical)
features. DEMs generated by operators on analytical plot-
ters or on softcopy workstations are of high quality but the
process is time and cost intensive. Thus, major research
efforts have been devoted to make stereopsis an automatic
process.

The success of automatic surface reconstruction from aerial
imagery is marginal. Despite considerable research ef-
forts there is no established and widely accepted method
that would generate surfaces in more complex settings, say
large-scale urban scenes, completely, accurately, and ro-
bustly. A human operator needs to be involved, at least on
the level of quality control and editing.

On the other hand, LIDAR has been touted as a promising
method to capture digital elevation data effectively and ac-
curately. LIDAR can be viewed as a system that samples
points of the reflective surface of the earth. The samples
are irregularly spaced. We call the original surface mea-
surements point cloud or mass points in this text. Laser
points are computed from navigation data (GPS/INS) and
range measurements. It is important to realize that there is
no inherent redundancy in the computation of a laser point.
In general, laser points do not carry semantic information
about the scene.

Table 1: Advantages and disadvantages of lidar and aerial
imagery for surface reconstruction.

LIDAR aerial imagery

ad- high point density rich in scene information
vant- high vertical accuracy high H + V accuracy
ages waveform analysis redundant information

dis- no scene information stereo matching
ad- occluded areas occluded areas
vant- horizontal accuracy? degree of automation?
ages no inh. redundancy

Table 1 lists a number of important advantages and draw-
backs of LIDAR and photogrammetry in terms of surface
reconstruction. LIDAR has a relatively high point density
and a high accuracy potential. However, in order to reach
the potential of a vertical accuracy of 1 dm and a horizontal
accuracy of a few decimeters, the LIDAR system must be
well calibrated. As is obvious from several accuracy stud-
ies, actual systems often do not yet reach this potential.
Recently, some LIDAR system offer the option to record the
entire waveform of the returning laser pulse. Waveform anal-
ysis yields additional information about the footprint area,
for example roughness and slope information. We have al-
ready elaborated on the disadvantages. Laser points are
positional, there is no additional scene information directly
available from a single point.

In contrast to laser points, surfaces derived from aerial im-
ages are potentially rich in scene information. Also, 3D fea-
tures in object space have a redundancy, r, of r = 2n − 3
with n the number of images that show the same feature.
The Achilles heel of photogrammetry is the matching, that
is, finding corresponding features on n images, where n ≥ 2.
The degree of automation is directly related to the matching
problem.

From this brief comparison it is obvious that some of the
disadvantages of one method are offset by advantages of
the other method. This is precisely the major argument for
combining, or fusing if you wish, the two methods.

2.2 Implicit vs. explicit surface description

Common to the techniques of acquiring digital elevation data
is a cloud of 3D points on the visible surface. Except for
measuring DEMs on analytical plotters, the mass points are
irregularly distributed. Consequently, the next step is to in-
terpolate the raw points into a regular grid. Digital Elevation
Models (DEM) are immensely popular in many engineering
applications. With DEM we refer to a surface representation
with bare-earth z−values at regularly spaced intervals in x−
and y−direction. A bare-earth DEM is void of vegetation and
man-made features—in contrast to a Digital Surface Model
(DSM) that depicts elevations of the top surfaces of features
elevated above the bare earth. Examples include buildings,
vegetation canopies, power lines, and towers. Finally, the
term Digital Terrain Model (DTM) is used as a DEM, aug-
mented with significant topographic features, such as break-
lines and characteristic points. A breakline is a linear feature
that describes a discontinuity in the surface. Such disconti-
nuities may signal abrupt changes in elevations across the
breakline, or may refer to abrupt changes of the surface nor-
mal.

Although very useful, it is important to realize that a DEM
or DSM does not make surface properties explicit. An ex-
plicit description of surface characteristics, such as planar
or higher-order surface patches, surface discontinuities and
surface roughness, is important for most subsequent tasks.
Object recognition and image understanding rely on the
knowledge of explicit surface properties and even the gen-
eration of orthophotos would greatly benefit from an explicit
description of the surface. In this line of thinking we con-
sider DEMs and DSMs as entirely implicit surface descrip-
tions and DTMs as partially explicit (if breaklines and distinct
elevation points are present). The challenge of describing
the surface explicitly can be met easier if aerial imagery
and LIDAR point clouds are fused. As described in Lee



(2002), the generation of explicit surface descriptions from
irregularly distributed mass points is accomplished by way
of segmentation and grouping processes, embedded in the
theoretical framework of perceptual organization.

2.3 Motivation for fusing LIDAR and aerial imagery

We already noticed that by combining (fusing) LIDAR data
and aerial imagery most of the disadvantages associated
with either method are compensated (see, e.g. Table 1).
The complementary nature of the two methods is even more
evident when we attempt to describe the surface explicitly.
Table 2 lists the most important surface properties that make
up an explicit description. Surface patches are character-
ized by an analytical function. For urban scenes with many
man-made objects, planar surface patches are very use-
ful. A scene may consist of many planar and second-order
surface patches. The exact boundary of surface patches is
another important surface property. Boundaries can be ex-
plicitly represented by polylines, for example. Equally impor-
tant is the explicit information about surface discontinuities,
such as breaklines. Object recognition and other image un-
derstanding tasks greatly benefit from information about the
roughness and material properties of surfaces. The inter-
ested reader may note that our proposed explicit surface
description is conceptually related to the 2.5-D-sketch (Marr
(1982)).

Table 2: Sources that predominantly determine
surface properties.

surface properties LIDAR aerial imagery

patches X
boundaries X
discontinuities X
roughness X
material properties

As Table 2 illustrates, LIDAR makes direct contribution to-
wards surface patches. Boundaries, however, are easier
to obtain from aerial imagery, as well as surface discon-
tinuities. If the entire waveform of the returning signal is
recorded, then LIDAR data contain information about the
surface roughness. From neither sensor, material proper-
ties can be easily obtained. This information could come
from a hyperspectral sensor, for example.

We propose to combine aerial imagery and LIDAR data on
two levels. On the first level we are concerned with establish-
ing a common reference frame for the two sensors. This is
an absolute prerequisite for the second step where extracted
information from both sensors is fused for a more complete
and explicit surface description. Note that this proposed
multisensor fusion procedure is resembles the feature-level
data fusion as proposed by Hall (1992). Conceptually, our
approach is also close to the definition of fusion provided
by Wald (1999), “Fusion aimes at obtaining information of
greater quality..."

3 Common reference frame for LIDAR data and aerial
imagery

This first step of our fusion approach is also known as sen-
sor alignment or registration. We prefer the term referencing
and mean by that the establishment of a common reference
frame for the sensor data. It entails a transformation, forward
and backward, between sensor data and reference frame.
LIDAR points are usually computed in the WGS84 reference
frame. Hence it makes sense to reference the aerial images
to the same system. Referencing aerial imagery to LIDAR
can then be considered an orientation problem. This is at-
tractive because the success of fusion can be quantitatively
judged from the adjustment results. Moreover, the features
extracted from LIDAR, serving as control features, can be
stochastically modeled and the error analysis of the orien-
tation will allow to discover remaining systematic errors in
the LIDAR data.

We propose to use sensor invariant features to determine
the relevant orientation parameters. Before elaborating fur-
ther on how to obtain sensor invariant features and their
use in orientation, we briefly summarize some aspects of
the direct orientation.

3.1 Direct orientation

If both sensors are mounted on the same platform then the
navigation system (GPS/INS) provides position and attitude
data for the aerial camera and the LIDAR system. Since the
two sensors, the GPS antenna, and the IMU unit are phys-
ically separated, the success of direct orientation hinges
on how well the relative position and attitude of the vari-
ous system components can be determined and how stable
they stay during data acquisition. If the two sensors are
flown on separate platforms, obviously each must have its
own navigation system. In this case, the sensor alignment
is now also affected by potential systematic errors between
the two navigation systems.

By and large, the direct orientation and hence the referenc-
ing of aerial imagery and LIDAR data works well. However,
there is no inherent quality control. If the two sensors are
misaligned, for example by an unknown mounting bias, one
may only find out much later, if at all. Another problem with
direct orientation is related to the camera orientation. It is
well-known that the interior and exterior orientation of aerial
images are strongly correlated. Schenk (1999), shows that
most errors in the interior orientation are compensated by
exterior orientation parameters. In fact, interior and exterior
orientation are a conjugate pair that should be used together
for an optimal reconstruction of the object space from im-
ages.

3.2 Determining sensor invariant features

The geometric transformation, necessary for establishing
a common reference frame, requires features in the ob-
ject space that can be extracted from both sensory input
data. Thus, the condition for aligning sensors in this indirect
fashion is that they respond, at least partially, to the same
phenomena in object space, referred to as sensor invariant
features in this paper.

Table 3 lists features that can be extracted in several steps
from LIDAR point clouds and aerial imagery. On the level
of raw data the two sensors have nothing in common that
can be directly used to register them. On the first level one



can extract 3D surface patches from laser points. Such
patches may be planar or higher order surfaces, depend-
ing on the scene. In built-up areas, usually many planar
surface patches exist, corresponding to man-made objects.
After surface patches have been extracted, a grouping pro-
cess establishes spatial relationships. This is followed by
forming hypotheses as to which patches may belong to the
same object. Adjacent patches are then intersected if their
surface normals are different enough to guarantee a geo-
metrical meaningful solution. In fact, if the adjacency hy-
pothesis is correct then the intersection is a 3D boundary
of an object. Lee (2002) treats the steps of extracting and
grouping patches as a perceptual organization problem.

Table 3: Multi-stage feature extraction from LIDAR and
aerial images.

LIDAR aerial imagery

raw data 3D point cloud pixels
feature extraction patches 2D edges
processing grouping matching
results 3D edges 3D edges, patches

Let us now examine the features that can be extracted from
images. The first extraction level comprises edges. They
correspond to rapid changes in grey levels in the direction
across the edges. Most of the time, such changes are the
result of sudden changes in the reflection properties of the
surface. Examples include shadows and markings. More
importantly, boundaries of objects also cause edges in the
images because the two faces of a boundary have different
reflection properties too. Hence we argue that some of the
2D edges obtained from aerial imagery correspond to 3D
edges obtained from laser points. That is, edges are poten-
tially sensor invariant features that are useful for solving the
registration problem. Note that the 2D edges in one image
can be matched with conjugate edges in other images. It
is then possible to obtain 3D features in model space by
performing a relative orientation with linear features.

Are 3D surface patches also sensor invariant? They cer-
tainly correspond to some physical entitities in object space,
for example a roof plane, face of a building, or a parking lot.
Surface patches are first order features that can be extracted
from laser point clouds relatively easily. However, it is much
more difficult to determine them from images. One way to
determine planar surfaces from images is to test if spatially
related 3D edges are lying in one plane. Surface patches
then can also be considered sensor invariant features.

3.3 Referencing aerial images to LIDAR data

From the discussion in the previous section we conclude
that 2D edges in images, 3D edges in models, and 3D sur-
face patches are desirable features for referencing aerial
images with LIDAR. Table 4 lists three combinations of sen-
sor invariant features that can be used to solve the fusion
problem. As pointed out earlier, we consider this first step as
the problem of determining the exterior orientation of aerial
imagery. Extracted features from LIDAR data serve as con-
trol information.

Table 4: Sensor invariant features for fusing aerial imagery
with LIDAR.

LIDAR aerial imagery Method

3D edges 2D edges SPR, AT
3D edges 3D edges ABSOR, AT
3D patches 3D patches ABSOR, AT

Orientation based on 2D image edges and 3D LIDAR
edges The first entry in Table 4 pairs 2D edges, extracted
in individual images, with 3D edges established from LIDAR
points. This is the classical problem of block adjustment,
except that our fusion problem deals with linear features
rather than points. Another distinct difference is the number
of control features. In urban areas we can expect many
control lines that have been determined from LIDAR data. It
is quite conceivable to orient every image individually by
the process of single photo resecting (SPR), that is, the
problem can be solved without tie features. This offers the
advantage that no image matching is necessary—a most
desirable situation in view of automating the fusion process.

Several researchers in photogrammetry and computer vi-
sion have proposed the use of linear features in form of
straight lines for pose estimation. Most solutions are based
on the coplanarity model. Here, every point measured on a
straight line in image space gives rise to a condition equa-
tion in that the point is forced to lie on the plane defined by
the perspective center and the control line in object space,
see, e.g. Habib et al. (2000). The solutions mainly differ in
how 3D straight lines are represented.

Although straight lines are likely to be the dominant linear
features in our fusion problem, it is desirable to general-
ize the approach and include free-form curves. Zalmanson
(2000) presents a solution to this problem for frame cam-
eras. In contrast to the coplanarity model, the author em-
ploys a modified collinearity model that is based on a para-
metric representation of analytical curves. Thus, straight
lines and higher-order curves are treated within the same
representational framework.

With the recent emergence of digital line cameras it is nec-
essary to solve the pose estimation problem for dynamic
sensors. The traditional approach is a combination of di-
rect orientation and interpolation of orientation parameters
for every line. This does not solve our fusion problem be-
cause no correspondence between extracted features from
LIDAR and imagery is used—hence no explicit quality con-
trol of the sensor alignment is possible. In Lee, Y. (2002)
the author presents a solution of estimating the pose for line
cameras by using linear features. In this unique approach
every sensor line is oriented individually, without the need
for navigation data (GPS/INS).

Orientation based on 3D model edges and 3D LIDAR
edges We add fusion with 3D model edges more for the
purpose of completeness than practical significance. In con-
trast to the previous method, edges must be matched be-
tween images to obtain 3D model edges. In general, image
matching, especially in urban areas, is considered difficult.
We should bear in mind, however, that in our fusion prob-



lem, the surface can be considered to be known. Hence,
the problem of geometric distortions of features can be well
controlled and matching becomes feasible, assuming that
reasonable approximations of the exterior orientation pa-
rameters are available. In fact, matching in object space,
using iteratively warped images, becomes the method of
choice. This matching procedure also offers the opportu-
nity to match multiple images. Now we have the chance for
a detailed reconstruction of complex surfaces from multiple
images.

Orientation with surface patches Originally, the idea of
using surfaces in the form of DEMs for orienting models was
suggested by Ebner and Strunz (1988). The approach is
based on minimizing the z−differences between the model
points and points in object space found by interpolating the
DEM.The differences are minimized by determining the ab-
solute orientation parameters of the model. Schenk (1999a)
modified the approach by minimizing the distances between
corresponding surface elements. We propose the latter
method for fusing aerial images with LIDAR.

The advantage of using patches as sensor invariant features
is the relatively simple process to extract them from laser
points. The fitting error of the laser points to a mathematical
surface serves as quality control measure. In contrast to
the previous methods, no planimetric features need to be
extracted. Patches are more robust than features derived
from them, for example 3D edges.

Unfortunately, the situation is quite different for determin-
ing surface patches in aerial images. Although theoreti-
cally possible by texture segmentation and gradiant anal-
ysis, it is is very unlikely that surface information can be
extracted from single images. Hence, image matching (fu-
sion) is required. Quite often, surface patches have uniform
reflectance properties. Thus, the grey level distribution of
conjugate image patches is likely to be uniform too, preclud-
ing both, area-based and feature-based matching methods,
respectively. The most promising approach is to infer sur-
face patches from surface boundaries (matched edges).

As shown by Jaw (1999), the concept of using control sur-
faces for orienting stereo models can be extended to block
adjustment. In analogy to tie points, the author introduces tie
surfaces. To connect adjacent models, the only condition is
to measure points on the same surface. However, the points
do not need to be identical—clearly, a major advantage for
automatic aerial triangulation.

Alternative solution with range images A popular way
to deal with laser points is to convert them to range images.
This is not only advantageous for visualizing 3D laser point
clouds but a plethora of image processing algorithms can
operate on range images. For example, an edge opera-
tor will find edges in a range image, suggesting that the 3D
edges used as sensor invariant features be determined from
range images. At first sight, this is very appealing since it ap-
pears much simpler than the method described in Section 2.
Let us take a closer look before making a final judgment,
however.

Generating range images entails the interpolation of the ir-
regularly spaced laser points to a grid and the conversion of
elevations to grey values. While the conversion is straight-
forward, the interpolation deserves closer attention. Our
goal is to detect edges. Edges in range images correspond

to rapid changes of elevations in the direction across the
edge. This is precisely where we must expect large interpo-
lation errors. It follows that the localization of edges in range
images may not be accurate enough for precise fusion.

Figure 2: Edge detection performed on a range image. The edges
are affected by interpolation errors and usually not suit-
able for sharp boundary delineation.

Fig. 2 depicts a sub-image with a fairly large building (see
also Fig. 3b). The DEM grid size of 1.3 meters (average
distance between the irregularly distributed laser points)
leads to a relatively blocky appearance of the building and to
jagged, fragmented edges. Moreover, edges are predomi-
nantly horizontal. It is quite difficult to detect non-horizontal
edges (boundaries) in object space from range images. Fi-
nally, when comparing the edges obtained from the range
image with those determined by intersecting adjacent pla-
nar surface patches it becomes clear that their use for fusing
aerial images with LIDAR becomes problematic.

4 Fusion of aerial imagery with LIDAR data

After having established a common reference frame for LI-
DAR and aerial imagery we are now in a position to fuse
features extracted from the two sensors to a surface de-
scription that is richer in information as would be possible
with either sensor alone. We have strongly argued for an
explicit description to aid subsequent processes such as ob-
ject recognition, surface analysis, bare-earth computations,
and even the generation of orthophotos. Since these appli-
cations may require different surface descriptions, varying
in the surface properties (quality and quantity), an impor-
tant question arises: is there a general description, suitable
for applications that may not even be known by the time of
surface reconstruction?

Surfaces, that is their explicit descriptions, play an impor-
tant role in spatial reasoning—a process that occurs to a
varying degree in all applications. We consider the surface
properties listed in Table 2 essential elements that are, by
and large, application dependent. In a demand-driven im-
plementation, additional properties or more detailed infor-
mation can be obtained from the sensory input data upon



request.

Surface patches are obtained by segmenting the laser
point cloud. The segmentation process will leave gaps, that
is, patches do not contiguously cover the visible surface. A
variety of reasons contribute to this situation. For one, oc-
clusions and low reflectance (e.g. water bodies) result in
regions with weakly populated laser points. Moreover, cer-
tain surfaces, such as the top of canopies, or single trees
and shrubs do not lend themselves to a simple analytical
surface description. It is conceivable to augment the set of
surface patches obtained from LIDAR data by surfaces ob-
tained from aerial imagery. An interesting example is vertical
walls, such as building facades. The number of laser points
reflected from vertical surfaces is usually below the thresh-
old criterion for segmentation. It is therefore very unlikely
that vertical surface patches are extracted. During the anal-
ysis of spatial relationships among patches it is possible to
deduce the existence of vertical patches. These hypotheses
can then be confirmed or rejected by evidence gained from
aerial images.

Boundaries: it is assumed that surface patches correspond
to physical surfaces in object space. As such, they are only
relevant within their boundaries. Thus, the complete bound-
ary description, B, is important. The simplest way to rep-
resent the boundary is by a closed sequence of 3D vec-
tors. The convex hull of the laser points of a surface patch
serves as a first crude estimation of the patches’ bound-
ary. It is refined during the perceptual organization of the
surface. However, boundaries inferred from LIDAR data re-
main fuzzy because laser points carry no direct information
about boundaries. A much improved boundary estimate can
be expected from aerial imagery. Matching extracted edges
in two or more overlapping images is greatly facilitated by
the LIDAR surface and by the knowledge where boundaries
are to be expected. Thus it stands to reason to replace the
somewhat fuzzy boundaries obtained from LIDAR by 3D
edges derived from aerial imagery.

Discontinuities are linear features in object space that sig-
nal either an abrupt change in the surface normal or an
abrupt change in the elevation. Discontinuities constitute
very valuable information, not only for automatic scene inter-
pretation but also for mundane tasks such as the generation
of orthophotos. Like boundaries, discontinuities are repre-
sented as 3D polylines. With a few exceptions, boundaries
are, in fact, discontinuities. Whenever patches are adjacent
their common boundary must be a discontinuity. Take a sad-
dle roof, for example. If the adjacency of the two roof planes
is confirmed then their common boundary (e.g. intersec-
tion of roof planes) is a discontinuity. Since discontinuities
are richer in information than boundaries, it is desirable to
replace boundaries whenever possible by discontinuities.

Discontinuities are derived from aerial images in the same
fashion as boundaries. Moreover, some of them can be ob-
tained from LIDAR by intersecting adjacent surface patches.
As noted earlier, corresponding 3D edges from images and
3D edges from LIDAR are used for establishing a common
reference frame between images and LIDAR.

Roughness is a surface patch attribute that may be useful
in certain applications. It can be defined as the fitting error
of the surface patch with respect to the laser points. The
waveform analysis of returning laser pulses yield additional
information about the roughness of the laser footprint and

hence the surface patch.

5 Experimental results

In this section we briefly demonstrate the feasibility of the
proposed approach to reconstruct surfaces in an urban
scene. We use data from the Ocean City test site. As de-
scribed in Csathó et al. (1998b) the data set comprises
aerial photography, laser scanning data, and multispectral
and hyperspectral data. Fig. 3(a) depicts the southern part
of Ocean City, covered by a stereomodel. In the interest
of brevity we concentrate on a small sub-area containing
a large building with a complex roof structure, surrounded
by parking lots, garden, trees and foundation plants that
are in close proximity to the building, see Fig. 3(b). The
aerial photographs, scale ≈ 1 : 4, 200, have been digitized
with a pixelsize of 15 µm. The laser point density is ≈ 1.2
points/m2.

First we oriented the stereopair with respect to the laser
point cloud by using sensor invariant features, including
straight lines and surface patches. The intersections of ad-
jacent roof planes are examples of straight-line features ex-
tracted from the LIDAR data (Fig. 3(d)). In the aerial im-
ages, some of these roof lines are detected as edges, see
e.g. Fig. 3(e,f)) and consequently used in the orientation
process. In order to avoid image matching we oriented the
two images first individually by single photo resectioning.
For checking the internal model accuracy we performed a
relative orientation with the exterior orientation parameters
and the laser points as approximations. The average par-
allax error, obtained from matching several thousand back-
projected laser points, was ±2.6 µm. The error analysis
revealed a horizontal accuracy of sensor invariant features
of ±2.6 µm, confirming that the LIDAR data sets (NASA’s
Airborne Topographic Mapper, ATM) are indeed well cali-
brated

We now move on to the surface reconstruction of the sub-
area, beginning with the LIDAR data. As described in detail
in Lee (2002), the laser point cloud is subjected to a three-
stage perceptual organization process. After having identi-
fied suitable seed patches, a region-growing segmentation
process starts with the aim to find planar surface patches.
In a second step, the spatial relationship and the surface
parameters of patches are examined to decide if they can
be merged. At the same time, boundaries are determined.
Fig. 3(c) shows the result after the first two steps. A to-
tal of 19 planar surface patches have been identified. The
white areas between some of the patches indicate small
gaps that did not satisfy the planar surface patch condi-
tions. We see confirmed that the boundaries of physical
surfaces, e.g. roofs, are ill-defined by laser points. The
third step of the perceptual organization process involves
the intersection of planar surface patches that satisfy adja-
cency condition. The result of intersecting adjacent planes
with distinct different surface normals is depicted in Fig.3(d).
Although extremely useful for spatial reasoning processes,
the segmentation results from LIDAR are lacking well de-
fined boundaries. Moreover it is desirable to increase the
discrimination between surfaces that may belong to differ-
ent objects. An interesting example is patch 3 (roof), 19
(tree), and 11 (foundation plant). With LIDAR data only one
cannot determine if these three patches belong to the same
object.



After having oriented the aerial imagery to the LIDAR point
cloud we can fuse features extracted from the images with
the segmented surface. Figs. 3(e,f) depict the edges ob-
tained with the Canny operator. We show them here to
demonstrate the difficulty of matching edges to reconstruct
the object space by stereopsis. With the segmented sur-
face and the exterior orientation parameters available it is
possible to constrain the edge detection process to special
areas, such as the boundaries of segmented regions, to
adapt the parameters of the edge operator, or even choose
other operators that may be better suited in a particular
case. Figs. 3(g,h) show the effect of using all the knowl-
edge that has been gained about scene before extracting
edges. The segmentation of the LIDAR points led to pla-
nar surface patches and boundaries. These boundaries are
projected back to the images and thus specify image re-
gions where we look for edges. The edges obtained in both
images are then projected into the segmented scene, for
example by intersecting the planar surface patches with the
plane defined by the projection center and the edge. With
this procedure we have now boundaries in object space that
have been derived either from LIDAR points or from aerial
images, or from a combination. Fig. 3(i) shows the final re-
sult. The color-coded boundaries reflect the combinations
that are also a useful measure to express the confidence
and accuracy. For example, the red roof edge was deter-
mined from LIDAR and confirmed by edges from both aerial
images.

6 Concluding remarks

We have shown in this paper that fusing aerial imagery with
LIDAR data results in a more complete surface reconstruc-
tion because the two sensors contribute complementary
surface information. Moreover, disadvantages of one sen-
sor are partially compensated by advantages of the other
sensor. We have approached the solution of the fusion prob-
lem in two steps, beginning with establishing a common ref-
erence frame, followed by fusing geometric and semantic
information for an explicit surface description.

Many higher order vision tasks require information about the
surface. Surface information must be represented explic-
itly (symbolic) to be useful in spatial reasoning processes.
Useful surface information comprises surface patches, de-
scribed by an analytical function, their boundaries, surface
discontinuities, and surface roughness. Note that the explicit
surface description is continuous, just like the real physical
surface. This is in contrast to the better known discrete rep-
resentations such as DEMs, DSMs, and DTMs. Here sur-
face information is only implicitly available with the notable
exception of a DTM that contains breaklines. Unlike explicit
descriptions, grid and triangular representations (TIN) have
no direct relationships with objects.

The fusion of aerial imagery and LIDAR offers interesting
applications. The first step for example establishes an ex-
cellent basis for performing a rigorous quality control of the
LIDAR data. This is particularly true for estimating the hor-
izontal accuracy of laser points and for discovering sys-
tematic errors that may still remain undetected even after
careful system calibration. Another interesting application
is change detection. Imagine a situation where aerial im-
agery and LIDAR data of the same site are available but with
a time gap between the separate data collection missions.

Differences between the two data sets that exceed random
error expectations, must have been caused by systematic
errors or by changes in the surface.

After having completed the fusion approach as described in
this paper, future research will concentrate on applications
in order to test the suitability of the explicit surface descrip-
tion in spatial reasoning processes as they pertain to object
recognition and other image understanding tasks.
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Fig. 3: Results of fusing aerial images with LIDAR data. Fig. (a) shows the test site of Ocean City and (b) depicts the
sub-area that was used to demonstrate the detailed surface reconstruction (indicated by white box in a). In (c), the results
of segmenting the LIDAR point cloud is shown with a total of 19 planar surface patches. The next step of the perceptually
organized LIDAR point cloud is shown in (d) where adjacent planes are intersected, resulting in the six breaklines, I1− I6.
Fig. (e,f) contain the edges of the aerial stereopair obtained by the Canny operator, illustrating the dif?culty of image
matching for stereopsis. The next ?gures (g,h) show more speci?c edges that are obtained using the current knowledge
about the scene. These edges were matched in object space with the segmented LIDAR surface. The ?nal result of the
surface reconstruction is shown in (i). The color code for the region boundaries corresponds to: red: LIDAR+aerial+aerial;
yellow: LIDAR+aerial; magenta: aerial+aerial; blue: LIDAR; green: aerial.


