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Abstract— The automatic reconstruction of urban scenes from
sensory input data is a daunting task. By and large the task
remains unresolved, although a considerable amount of research
has been devoted to its solution. Many of the proposed methods
are either too application dependent, or address only some
aspects of the general problem. Moreover it appears that solutions
based on a single sensor source, for example intensity images
or laser point clouds, lead to partial solutions. In this paper
we propose the reconstruction of visible surfaces from multi-
sensor data, embedded in a fusion framework. We postulate
that the reconstructed surface is an intermediate and application
independent representation of the scene, similar to the 2.5 D
sketch proposed by Marr in his vision paradigm. In contrast
to the viewer based 2.5 D sketch, our reconstructed surface
is represented in a suitable 3D Cartesian reference system. It
contains explicit surface information, including shape and surface
discontinuities. We argue that such an explicit description greatly
benefits applications, such as object recognition, populating or
updating GIS, change detection, city modeling, and true or-
thophoto generation. This is because the 3D object space enables
more powerful reasoning methods to aid object recognition and
image understanding as opposed to the traditional approach of
reasoning in the 2D image space. Another strong motivation
for the proposed application independent surface reconstruction
scheme is the multi-source scenario with imaging and laser point
data, and possibly hyperspectral data. These widely disparate
data sets contain common (redundant), complementary and
occasionally conflicting information about the surface. The paper
discusses the notion of different surfaces and their relationships.
Major emphasis is placed on the development of a general, true
3D surface representation scheme that copes with the problem
of multi layer surfaces (e.g. multiple overpass).

I. INTRODUCTION

Judged from the number of publications, surface reconstruc-
tion and object recognition from sensory input data is a very
active research area in photogrammetry. Despite considerable
progress, we are still far from a unified and generally accepted
methodology that would lend itself to automatic (not even to
think of autonomous) reconstruction of urban scenes.

It has long been recognized that surfaces, their properties
and characteristics play an important role in image under-
standing and object recognition. Many other perception tasks,

such as navigating a robot, make extensive use of surface
properties. Surfaces are intermediate representations in the
long processing chain from data to objects.

There is a rich body of literature related to surface re-
construction and extraction of man-made objects from aerial
images of urban scenes. Most of the proposed surface re-
construction methods aim at the automatic generation of
Digital Surface Models (DSM), for example by computing
dense depth maps from stereo (e.g. [2], [10], [5], [4]), or
from multiple images ([14]). The complexity of urban scenes,
the close proximity of different objects (e.g. trees next to
buildings), large elevation differences, occluded regions, shad-
ows, periodic structures, and moving objects pose an almost
insurmountable challenge to do surface reconstruction from
images only.

The advent of airborne laser scanning (ALS) has shifted
research more recently toward surface reconstruction and
object extraction from 3D laser point clouds (e.g. [9], [1], [6],
[7], [8]). Considerable effort has been devoted to determine
the topographic surface, or bare-earth, by filtering out points
which have been reflected from objects above the ground.
With the ever increasing density of laser points and the
availability of additional information, such as the intensity
of the returning pulse, multiple returns, or the recording of
the entire waveform, there is hope that object extraction may
become more successful.

In this paper we combine aerial images, laser point clouds,
and possibly multispectral/hyperspectral data for determining
the complex surface of urban scenes. Specifically, we propose
an intermediate surface representation without thinking of
applications. In fact, the surface is reconstructed without
relying on any domain knowledge and we see this application-
independent surface as the transition between early and late
vision processes. The next section provides some background
information and motivation for the proposed representation.
Sec. 3 introduces the important notion that physical surfaces
are topologically complete—in contrast to sensed surfaces that
have “holes” (occlusions). The objectives of the proposed
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surface representation are stated in Sec. 4 and important
implementation issues are addressed in Sec. 5. Since this is
a conceptual paper, no examples with real data are included.
The main purpose of the paper is to stimulate discussions about
the fascinating and challenging problem of urban mapping and
city modeling.

II. BACKGROUND

A. Human visual system and surfaces

Humans are remarkably adept in organizing visual stimuli,
imposing meaningful structure for interpreting a scene. Marr
([11]) approaches vision as a complex information processing
task that has to be understood on the three levels of compu-
tational theory, representation and algorithms, and hardware
implementation. Human visual processes are organized in a
modular fashion and the representational framework includes
the retinal images, the primal sketch, the 2.5 D sketch, and
the 3D model representation. The primal sketch makes image
information explicit, for example intensity changes and their
organization.

The 2.5 D sketch is a pivotal point in Marr’s vision theory. It
is the end result of early vision processes that aim at extracting
information about the visible surface of a scene without
special knowledge what is in the scene. This viewer centered
representation objectively describes the physical reality of the
scene before it is decomposed into objects. The 2.5 D sketch
consists of the two quantities depth and surface orientation,
and their discontinuities. Discontinuities of surface orienta-
tions are manifest by contours, for example. We emphasize
the important notion that surface information in the 2.5 D
sketch is independent of objects. It does not matter if the
reconstructed visible surface is in fact the surface of object
X, or Y, or Z. That is, no semantic meaning is associated.
The construction of the 2.5 D sketch as the result of early
vision processes is the end of pure perception and solely data-
driven, requiring only general knowledge about the physical
world. In contrast, the interpretation of the 2.5 D sketch, or
late vision processes for that matter, are no longer data-driven
and require special knowledge about the nature of objects,
their use or functionality.

The notion that vision is modular is a widely adopted
paradigm in cognitive science and computer vision. It is
inconceivable to perform such complex tasks as recognizing
objects in one process that operates directly on the raw visual
stimuli. The strongest motivation for our proposed application-
independent surface reconstruction is the 2.5 D sketch.

B. Perceptual organization

Perception is a fundamental process that allows organisms to
interpret sensory stimuli to create a meaningful description of
the world. Such descriptions are the starting point for making
decisions and executing actions. Perceptual organization is
concerned with imposing structure on primitives that are
obtained from sensory input data. It is commonly agreed in
the computer vision community that sensory input data should
first be organized into perceptually meaningful groups before

higher-level processes begin. For example, image interpreta-
tion, object recognition, robot navigation, image understanding
do not operate directly on the sensed signals, rather on more
abstract descriptions of the physical world.

In [12], the authors propose to classify perceptual processes
at the signal, primitive, and structural levels. Another distinc-
tion is the spatial and temporal domain perceptual organization
is performed, e.g. 2D or 3D, with or without time domain.
Perceptual organization at the signal level does not require
domain-specific, higher-order knowledge. It is purely data-
driven, relying only on the general principles. In contrast,
perceptual processes on the structural level are application
dependent, requiring specific information. Organizing struc-
tures to higher order entities that correspond to structures of
real world objects is partially driven by information about
objects. This is an important point because our proposed
surface representation is application independent; processes
that use domain specific knowledge are not allowed in the
construction.

III. SURFACES

This section describes different surfaces in preparation for
the definition of our proposed application-independent surface
reconstruction (AISR) scheme.

A. Physical surfaces

The physical world consists of objects. Disregarding flying
objects we note that the surfaces of all objects are connected
and we call this joint surface the physical surface. The physical
surface is continuous everywhere; the only discontinuity is in
the surface orientation that may occasionally change abruptly.
Continuity implies that the physical surface has no ends,
referred to as topologically complete in this paper.

Imagine an ant with its capability to walk on the top and—
defying gravity—on the bottom surface of horizontal objects,
on vertical surfaces, and on overhangs. Assuming no hostile
surface material (e.g. a sticky surface), the ant would be able to
reach every place of the physical surface without ever meeting
an end that would force it to turn around or to jump. It would
climb up a tree, follow twigs, walk on top of leaves and back
on the bottom surface of the leaf (which is a different physical
surface, connected to the top with a tiny, elongated surface,
reflecting the thickness of the leaf). The ant’s only problem is
to master the changes in surface orientation which occasionally
may pose a challenge if you think of the end of a leaf with
the rapid transition from top to bottom surface, amounting to
a change of 180o in one step.

Strictly speaking, the ant cannot reach every point on the
physical surface; for example, it will walk across tiny cracks.
A larger ant will cross even wider cracks and will walk over
obstacles its little brother would have experienced as a series
of surface orientation changes. Let us equip the ant with
a 3D positioning system that will send a signal whenever
the ant moves by a distance equal to its size. This will
result in a discrete sampling of the physical surface with
the level of detail proportional to the ant’s size. Obviously,



this analogy raises the question about scale. We will address
the scale problem in Sec. IV-D. In conclusion, the physical
surface is continuous everywhere with the exception of the
surface orientation that occasionally changes abruptly. We also
consider it opaque. As a consequence, the opaque physical
surface has no direct information what sort of objects it
envelops.

B. Sensed surfaces

In order to approximate (reconstruct) the physical surface,
various types of sensors are employed. However, the sensors
will only cover a part, called the sensed surface. A camera,
for example, records intensity values that are proportional to
the reflectance properties, the illumination, and the inclina-
tion angle (angle between surface normal and illumination
direction). Since the camera is sensitive to the visible portion
of the spectrum, the sensed surface is what we perceive as
the visible surface. Airborne laser scanning systems (ALS)
record the travel time of a laser pulse from the sensor to
a spot on the surface where it is reflected (back scattered),
partially back to the sensor. Whereas imaging sensors provide
complete coverage of the sensed surface, ALS systems sample
it discretely. Sensors such as ground penetrating radar or
geophysical instruments, do not sense the physical surface.
Hence, they are not useful in the surface reconstruction as
discussed here.

C. Occluded surfaces

Considering the complexity of the physical surface it is
nearly impossible to sense it everywhere. For example, air-
borne sensors will only record data from portions of the phys-
ical surface that is visible from the sensor’s position. We call
the portions of the physical surface that is not sensed occluded
surface (not to be confused with the part that is invisible from a
viewer’s position). Occluded surfaces are simply the difference
between physical and sensed surface. Unlike physical surfaces,
sensed surfaces are disconnected and may have abrupt depth
changes at their boundaries. Adding the occluded surfaces
avoids this problem: sensed and occluded surfaces together
are closed. We also believe that the explicit representation of
occluded surfaces is useful in object recognition. For example,
a surveillance task benefits from the knowledge about occluded
surfaces in that it may deploy sensors to cover missing areas.

D. Virtual surfaces

A major problem in segmenting 3D point clouds into
spatially coherent surface patches is the selection of seed
regions. If we are lucky then the selected points belong to
a smooth portion of the sensed surface. It cannot be avoided
that the seed region straddles discontinuities (in surface depth
and/or orientation), however. Fitting a model to noisy data
from unknown populations is a challenge. Fig. 1 illustrates
the problem. All points selected for the fitting process pass
the threshold criteria, but the fitted surface is not a part of the
physical surface. Such surfaces are adequately called virtual

Fig. 1. Example of virtual surface. Points belonging to different portions of
the physical surface are wrongly grouped together.

surfaces and should be avoided since they are likely to confuse
subsequent interpretations.

Segmentation by region growing suffers from similar prob-
lems. The process starts with a seed region and adds neighbor-
ing points as long as they fit a specified tolerance. Even if the
points of the seed region are on a physical surface patch, points
of other patches may be added, depending on the geometry and
the adjustment procedure.

E. Surface descriptions

Fan [3] divides surface descriptions into two classes: global
and segmented descriptions. We briefly comment on a few
popular schemes in use.

1) Global surface descriptions: Digital Elevation Models
(DEM) and Digital Surface Models (DSM) are undoubtedly
the most widely used descriptions of surfaces in mapping and
engineering applications. A DEM contains elevations of the
topographic surface (bare earth) at regularly spaced grid posts.
Since it is void of any objects with a vertical dimension it is not
suitable for urban applications. In contrast to the DEM, a DSM
includes elevations on the top surface of objects. If explicit
information about surface discontinuities is added, such as
breaklines (elevation discontinuities) and formlines (surface
orientation discontinuities), the term DTM is used (Digital
Terrain Model). Triangulated Irregular Nets (TIN) are popular
for modeling surfaces that are sampled at arbitrary locations
(e.g. by ALS systems). The major disadvantage of all these
popular surface description methods is the lack of explicit
surface shape information. Moreover, they cannot describe
vertical surfaces nor multiple surfaces at the same location
(e.g. bridge and surface below it).

2) Segmented surface descriptions: Here an attempt is
made to approximate a set of spatially coherent 3D points
by a mathematical surface, with a planar surface the most
popular one. Many different approaches have been proposed
in computer vision (segmenting range images) and mapping
(segmenting laser point clouds). Fitting a 2D polynomial to a
point cloud is trivial as long as the points belong to the same
surface. The crux is to find these points prior to fitting and
this requires the determination of surface discontinuities.
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Fig. 2. Reconstructed surface as transition between early vision and late
vision processes.

IV. PROPOSED APPLICATION-INDEPENDENT SURFACE

RECONSTRUCTION

A. Objective

Simply stated, the objective of our proposed application-
independent surface reconstruction (AISR) scheme is to ap-
proximate (reconstruct) the physical surface from intensity
images and 3D laser point clouds as faithfully and as rich
in explicit surface information as possible, without the use
of domain-specific knowledge. Sensors can be on airborne
and/or terrestrial platforms (e.g. mobile mapping systems,
terrestrial laser scanning systems). Imaging systems include
multispectral/hyperspectral scanners.

The reconstruction is purely data-driven but the description
is on highest possible level. AIRS is a platform where surface
information extracted from different sensors is posted, com-
bined, and analyzed. Only basic knowledge about the physical
surface is allowed in the analysis whose major task is to
resolve conflicts, identify ambiguities, and assign confidence
levels to the surface description. In this sense, AISR will be
the best explanation for data. As illustrated in Fig. 2, the
reconstructed surface is the transition from early vision to late
vision processes.

B. Reference system

The reconstruction is performed in a 3D Cartesian coordi-
nate system with the x, y−plane tangent to the ellipsoid at a
point within the project area. The positive y−axis points to-
ward north, the x−axis toward east, and the z−axis completes
the right-handed system. This choice of the coordinate system
offers several advantages. First it provides a suitable, common
reference for combining surface information extracted from
the different sensors involved. Secondly it introduces intrinsic
meaning to some surface patches. For example, a horizontal
surface patch is on a equipotential surface, a vertical patch is
aligned with the local vertical to the ellipsoid, and the azimuth
of a surface boundary is the angle between north and the
boundary. This intrinsic knowledge may be useful when it
comes to the interpretation of AIRS.

C. Surface description

AIRS is the result of segmenting the sensed surface into
spatially coherent regions (surface patches) that are bounded
by surface discontinuities. The boundaries of the surface

patches are represented as 3D polylines. The surface patch
boundary must be closed.

The shape of the surface patches is made explicit by approx-
imating it with a second degree polynomial. Higher degree
polynomials are known for introducing artificial oscillations
and should be avoided. Many segmentation methods are based
on fitting planes. While planar surface patches are abundant
in scenes that contain many man-made objects, the restriction
to plane fitting may introduce problems for approximating
topographic surfaces.

In case the fitting of a polynomial to a designated surface
patch fails (e.g. fit error exceeds a threshold value), the volume
of the point cloud and low order moments are computed and
stored instead of the polynomial coefficients.

A key feature of AISR is the explicit representation of
occluded surfaces. As elaborated in Sec. III-A, the physical
surface is topological closed. If it were segmented into surface
patches, then all the boundaries belong to two patches. That is,
every patch of the physical surface is completely surrounded
by other patches. If the sensed surface does not completely
cover the physical surface (hardly possibly in urban scenes)
then the completeness property does not hold. To satisfy it,
small gaps are filled and occluded surfaces are added.

AISR also contains the results of classifying
multi/hyperspectral images but this requires purely data-
driven classification methods that do not require training, for
example.

We summarize the surface description of AIRS as follows:

1) Boundaries of surface patches: 3D polylines with confi-
dence level.

2) Surface patches:

• coefficients of second order polynomial
• fit error (surface roughness)
• clusters of points not belonging to the fitted surface

–or–
• volume and moments of points within patch

3) Occluded surfaces (label, no surface properties).
4) Connectedness graph (direct neighbors of surface

patches).
5) Class labels.
6) Confidence level.

D. Scale

In a strict sense, the scale at which the segmentation of the
sensed surface is performed is application dependent. While
some applications operate on a rather coarse representation,
others may depend on as a fine resolution as possible. Since
coarse representations can be obtained from a detailed one
(but not the other way around), we perform the reconstruction
at a detail level. The level of details is limited by two factors,
however. For one, a surface patch must have a minimum
number of surface points (e.g. laser points) for making the
surface fitting process robust. Therefore the smallest surface
patches are defined by the density of the laser point cloud.
The sampling density of today’s ALS systems may be as high
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Fig. 3. Traditionally, processing sensor data is performed independently and
extracted information is combined at a later step. As illustrated by red lines,
some processes may benefit from information gained by other sensors.

as a few points per square meter. Terrestrial laser scanning
systems have even higher point densities.

Discrete surface points can also be obtained from intensity
images, for example by extracting and matching interest
points. Obviously, the point density depends on the gray
level distribution within a surface patch, and the occurance
of corresponding points in overlapping images.

The boundaries of surface patches are determined by surface
discontinuities (abrupt changes in surface orientation, bound-
ary between sensed and occluded surface). Hence, boundaries
are topographic properties of the physical surface. If these
boundaries are obtained from intensity images then it is
possible, and indeed recommended, to employ a scale-space
approach, considering only boundaries that persist through a
range of scales. In this fashion a scale is imposed on the
segmentation.

V. REALIZATION

This section describes some key elements of the realization
of the application-independent surface reconstruction scheme.
First and foremost the implementation is embedded in a fusion
framework that exploits the synergism of multiple sensors
to the maximum possible extent. Fig. 3 depicts the typical
scenario of processing sensory input data independently from
each other before the results are combined in a later step. Fu-
sion can take place at an earlier stage, however. For example,
some processes may benefit from intermediate results of other
sensors. A point in case is the matching of extracted features
from intensity images—a difficult and often ill-posed process,
particularly if images widely differ in viewing geometry and
radiometry. Matching in object space with the support of
surface information obtained from the laser point cloud makes
it a much more reliable process.

A. Stratgegy

The reconstruction of the surface from multiple sensors
is performed in a fusion framework. Segmenting the sensed
surface is driven by determining surface patch boundaries that
are features of the physical surface. These boundaries are
obtained from overlapping intensity images and independently

checked with the point cloud. We pursue a strategy that
determines first patches of high confidence before proceeding
with patches of lesser confidence. Our rigid sensor orienta-
tion (sensor alignment) approach establishes a transformation
between the sensor systems and global reference frame. This
greatly facilitates the transformation of sensor information to
the 3D reference system and vice versa.

B. Procedure

The major tasks of the surface reconstruction scheme in-
clude

• sensor registration
• boundary detection
• surface patch analysis
• detecting and adding occluded surfaces
• completeness check

C. Sensor registration

This first step is also known as sensor alignment or sensor
orientation. It entails a transformation, forward and backward,
between sensor data and reference frame. The point clouds
originating from ALS systems are usually recorded in the
WGS84 reference frame and it is straight forward to transform
them to the proposed local project system (Sec. IV-B). The
registration of intensity images requires the determination of
the exterior orientation parameters. If a platform orientation
system was used then the orientation parameters can be
inferred from the navigation data. This data may not be
precise enough or not available at all. Therefore we perform
an independent orientation that will register intensity images
to the 3D point cloud, based on sensor invariant features. Such
features are present if the sensors respond to the same phe-
nomena of the physical surface. For example, rapid changes
in surface orientation may be extracted from the 3D point
cloud by way of analyzing local surface curvatures. In intensity
images, the same feature of the physical surface may be
manifest as a gray-level discontinuity. Algorithms of feature-
based photogrammetry permit the orientation of images with
linear and 2D features (see [13] for more details).

D. Boundary detection

The boundaries of surface patches are distinct features of the
physical surface, with discontinuities in the surface orientation
the most prominent one. The boundaries are “visible” in
intensity images, at least partially, and can be detected by
an edge operator. However, it is very unlikely that the surface
patch boundaries would neatly show up as closed contours
in an image. Rather, only segments will be detected as well
as many other edges that are not related to surface patch
boundaries at all. The challenging problem of detecting surface
patch boundaries is approached by the following steps:

1) Detect edges at multiple image scales. Only edges that
occur over a range of scales will be considered.

2) Transform edges from all images to reference system.
3) Determine corresponding edges in the 3D reference

system based on spatial proximity.



Fig. 4. Illustration of projecting image edges onto the 3D point cloud.

4) Edges that have been matched on multiple images (min-
imum two) in previous step will be intersected, resulting
in 3D boundaries.

5) The 3D boundaries will be checked for closeness, small
gaps will be filled. Closed boundaries are candidates for
surface patch boundaries.

Edge detection at multiple scales is a standard procedure in
computer vision. Increasing the scale increases the signal-to-
noise ratio; edges that persist over several scales are more
reliable and are more likely to correspond to features of
the physical surface. To preserve the geometrical accuracy
(localization) of edges obtained at larger scales, scale-space
tracking is necessary.

The 2D image edges are projected to the 3D reference
system by intersecting the projection rays with the 3D point
cloud. As depicted in Fig. 4, the projection ray of an edge
point (edge pixel or vertex of a segmented edge) is defined
by the exterior orientation parameters of the image. This ray
intersects the surface, for example the triangle of a TIN model
of the discrete 3D laser point cloud.

Corresponding edges of several overlapping images must
be clustered in the 3D reference system. Hence, finding
corresponding edges amounts to analyzing line clusters. This
approach has several advantages over the more traditional
methods that seek correspondences in images. For one, edges
from all images are simultaneously analyzed, thus support-
ing each other. This is yet another example of fusion that
makes weak processes more robust. The transformation to the
common reference system corrects the shape distortions of
image edges induced by viewing geometry and topography. It
is therefore possible to match edges from images with widely
different viewing geometries (e.g. oblique aerial images)—
an almost insurmountable problem when attempted in image
space.

Once the correspondence of edges is established, the precise
location in the 3D reference system is found by simultaneous,
multiple intersection. Note that the resulting 3D edges are
obtained solely from images, independent of the point cloud.

E. Surface patch analysis

1) Point selection: The selection of points of the 3D point
cloud that are within a surface patch boundary appears trivial.

n

x

y

Fig. 5. Left panel shows boundary points and a fitted plane through the
points with the plane normal n. The right panel shows the local coordinate
system and the transformed boundary points.

Indeed this is true for horizontal surface patches and single
layer surfaces. Here, we select all points that are within the
surface patch boundary. But consider vertical surfaces, or
several layers of horizontal surfaces (e.g. multiple overpasses),
structures that occur frequently in urban scenes. The selection
of points is now more involved and we proceed by fitting a
plane through the boundary points, followed by establishing a
rigid body transformation between the reference system and a
local coordinate system that has its origin at the centroid of
the boundary points and is oriented such that the x, y−plane
is coplanar to the fitted plane. That is, the z−axis is parallel to
the plane normal. A subset of the 3D point cloud (candidates
of surface patch points) is transformed to the local surface
patch coordinate system. Every point within the (transformed)
boundary and within a distance threshold is now considered a
patch point.

Fig. 5, left panel, shows boundary points and a fitted plane
through the points with the plane normal n. The right panel
shows the local surface patch coordinate system and the
transformed boundary points.

2) Surface fitting: To make the shape properties of a surface
patch explicit, the patches are approximated by a second
degree polynomial. Surface fitting is performed in the local
patch coordinate system, introduced in the previous section.
A robust estimation method is used because it is important to
exclude points that do not belong to the fitted surface. Imagine
a surface patch whose boundary delineates a parking lot. Some
of the extracted patch points may have been reflected from
small objects on the parking lot, for example, cars, shrubs,
parking meters, and so on. Although small objects may well
have generated edges in the images, they have been discarded
(insignificant) during the scale-space edge detection approach.

Surface patch points that have been left out in the fitting
process are further analyzed. If they form spatial clusters,
the location and the number of points becomes a part of the
surface patch description, together with the coefficients of the
polynomial fit and the fit error.

If the the surface fitting process fails, for example fewer
than half of the patch points are on a second degree surface,
the volume of the convex hull of the patch points is computed
and stored instead of the coefficients.



Fig. 6. Left panel shows surface patches that are only partially connected
with another patch. The heavy lines mark boundary segments that have only
one patch, but they are connected and define an occluded surface patch. The
right panel shows a surface patch without any connections to other patches
(free floating).

3) Spectral properties of surface patches: If multi or hy-
perspectral data is available then their image pixels within
the surface patch are extracted and geometrically corrected
with the surface parameters determined in the surface fitting
process. The spectra of all patch pixels are now compared for
similarity and an average spectrum is computed and stored
together with the other surface patch description. In case the
surface patch is spectrally not homogenous, the average of all
populations is stored, but no attempt is made to subdivide the
surface patch into spectrally homogenous regions.

After processing all surface patches, an unsupervised clas-
sification with the average spectra is performed and the class
labels are added to the patches.

F. Detecting occluded surfaces

During the surface patch segmentation a list is generated
that identifies for every segment of a patch boundary the
neighboring surface patches. After processing all patches, the
list is checked for boundary segments that connect only one
patch—an indication for an occluded surface.

Fig. 6 shows two examples of occluded surfaces. The
first case is simple since all boundary segments with one
connected surface patch are connected and closed. Thus, an
occluded surface is added and labeled accordingly. However, it
consists of two planes (roof overhang and vertical wall), which
violates the surface patch condition. This and the next example
demonstrate that occluded surfaces are abstract quantities that
are introduced to topologically close the surface segmentation.

The second case shows a surface patch whose entire bound-
ary connects only one surface patch. Unlike in the previous
case, there is no other single boundary in the neighborhood
with which one can connect to form an occluded surface.
The surface patch is free floating—a physical impossibility—
but there is no clue from the data on how to connect. Free
floating surface patches are labeled accordingly, but further
interpretation is left to the application as this requires domain
knowledge.

VI. CONCLUSION

We have presented the conceptual framework of an
application-independent surface reconstruction scheme, suit-
able to deal with the complexities of urban scenes. Explicit
surface information, such as shape and boundary of surface

patches and spectral properties, is represented in a 3D object
space coordinate system. This information-rich, abstract rep-
resentation is obtained by fusing multi-sensor data, such as
intensity and spectral images, and laser point clouds, without
domain knowledge. The true 3D representation of surfaces
copes with such complex situations as bridges above ground
surfaces and multiple freeway overpasses.

The purpose of the surface reconstruction is to act as an
intermediate representation for applications, such as bold-earth
determination, generation of true orthophotos, autonomous
vehicle navigation (terrestrial and airborne), object recog-
nition, change detection, site modeling, and city modeling.
The abstract description does not only make relevant surface
information explicit but is in itself the most effective data
compression method.

Future work will concentrate on the implementation and
on the refinement of the design. Case studies with airborne
and terrestrial sensors will demonstrate the feasibility of the
proposed system, particularly for the generation of true 3D
city models.
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